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Abstract

Coreference resolution is a vital subtask for many natural language processing and understanding applica-
tions. The aim of this task is to cluster mentions in a text based on the entity to which they refer. There has
been anincreasing gap in performance between coreference resolution for high-resource languages (English,
Spanish, Chinese, etc.) and low-resource languages (Dutch, Urdu, Swahili, etc.). This is due to most novel
techniques being primarily developed for high-resource languages and low-resource languages lacking the
amounts of data and engineering effort required to develop sufficiently large models, which have become
the driving force behind most recent increases in performance.

In this work, we aim to mitigate this gap in performance between the English and Dutch languages for the task
of coreference resolution. By fine-tuning a large pre-trained multilingual model on both English and Dutch
coreference resolution at the same time, we are able to gain a 7.61% increase in performance compared to
our Dutch coreference resolution baseline. Additionally, we design a domain adaptation system to help our
model better generalize information between the English and Dutch languages. However, this system was
not able to further increase the performance of our multilingual approach.

Keywords

coreference resolution, cross-lingual learning, multilingual learning, domain adaptation, domain adversarial
neural network
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Abstract - Coreference resolution is a vital sub-
task for many natural language processing and un-
derstanding applications. There has been anincreas-
ing gap in performance between coreference resolu-
tion for high-resource languages (English, Spanish,
Chinese, etc.) and low-resource languages (Dutch,
Urdu, Swahili, etc.). This is due to most novel tech-
niques being primarily developed for high-resource
languages and low-resource languages lacking the
amounts of data and engineering effort required to
develop sufficiently large models, which have be-
come the driving force behind most recent increases
in performance.

In this work, we aim to mitigate this gap in perfor-
mance between the English and Dutch languages for
the task of coreference resolution. By fine-tuning a
large pre-trained multilingual model on both English
and Dutch coreference resolution at the same time,
we are able to gain a 7.61% increase in performance
compared to our Dutch coreference resolution base-
line. Additionally, we design a domain adaptation
system to help our model better generalize informa-
tion between the English and Dutch languages. How-
ever, this system was not able to further increase the
performance of our multilingual approach.

Keywords - coreference resolution, cross-lingual
learning, multilingual learning, domain adaptation,
domain adversarial neural network

Introduction

Coreference resolution is the task of clustering men-
tions in a text based on the entity to which they refer.
While coreference resolution is not solved (yet), good
understanding of this task is essential to maximally
capture all information expressed in a text.

Recent coreference resolution systems are all
based on end-to-end deep learning. While deep learn-
ing mitigates the need for expensive feature engi-
neering, the resulting models are heavily dependent
on the availability of large annotated datasets and
pre-trained Transformer models.

These large pre-trained models and the annotated
datasets needed to fine-tune them are available for
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high-resource languages, however this is often not
the case for resource-constrained languages. This
has caused a growing performance gap between
these languages, causing a major part of the global
population to miss out on state-of-the-art natural lan-
guage processing applications.

Investing in new and improved resources for low-
resource languages is a possible solution. However,
this approach is exceedingly expensive and unscal-
able with regard to the total number of languages and
dialects spoken in the world today.

A compelling case can be made for the reuse of
existing data from a high-resource language to in-
crease the performance on a low-resource language.
Intuitively, both language-understanding and world-
knowledge is needed to achieve high coreference
resolution performance. While a document in one
language and its translation in another can differ in
terms of how a certain piece of information is pre-
sented, we can expect the entities represented within
the document to remain similar. Based on this intu-
ition, we argue it is possible to leverage the world-
knowledge contained in documents of one language
for the benefit of coreference resolution on another
language, given that we can make abstraction of the
difference in how the information is presented using
both languages.

Our goal is to improve the state-of-the-art coref-
erence resolution results on low-resource languages
by leveraging the existing high-resource data. We
propose a technique based on multilingual learning
and domain adaptation to achieve this. We limit our
work by only evaluate our technique on the Dutch lan-
guage.

We start by building a neural end-to-end corefer-
ence resolution benchmark for the Dutch language,
using a publicly available annotated Dutch dataset.
We further investigate how to incorporate an addi-
tional English dataset during training. Finally, we de-
sign a domain adaptation technique, based on do-
main adversarial neural networks, to help our model
better leverage the English dataset for Dutch corefer-
ence resolution.



Related work

Neural coreference resolution - Previously, state-of-
the-art results on the task of coreference resolution
were attained via rule-based systems [1]. Recently,
end-to-end deep learning models have been consis-
tently achieving better results. The first successful
end-to-end coreference resolution architecture was
introduced by [2]. For each span of words in a text,
the architecture assigns a previous span that refers
to the same entity. Span pruning is used to filter out
spans that do not refer to an entity. Based on these
predicted links, a final coreference clustering is ex-
tracted.

The architecture requires an encoder to transform
a text into a sequence of embeddings, which are sub-
sequently used to form span-level embeddings. Origi-
nally, [2] used a bidirectional LSTM [3] to produce con-
textualised word-embeddings of the input sequence.
Evidently, [4] found better results when using BERT [5]
to produce subword-embeddings.

Additionally, [6] introduced SpanBERT to achieve
even better performance. SpanBERT is specifically
pre-trained on large amounts of unsupervised data to
produce high-quality span embeddings.

To evaluate the performance of our coreference
resolution system, we will use the MELA F1 score [7].

Multilingual NLP - Lately, a plethora of low-
resource pre-trained Transformer models have been
developed [8, 9, 10]. While these models are a good
first step in getting low-resource NLP up to speed,
they require (i) a large corpus to pre-train and (i)
language-specific annotated datasets for fine-tuning,
both of which are not always readily available.

In [11], XLM is introduced. The authors pre-train a
12-layer Transformer encoder on multiple languages
at the same time and achieve state-of-the-art results
on cross-lingual natural language interference and
(un)supervised machine translation. Interestingly,
their model achieves better perplexity on some low-
resource languages compared to a Transformer di-
rectly trained on these languages. This finding indi-
cates how a multilingual model might perform better
on low-resource languages when not enough data is
available to fully pre-train a language-specific model.

Building on top of XLM, XLMR [12] achieves even
better results by scaling the model capacity and in-
creasing the amount of data used during pre-training.
The result is a large model, containing 270M parame-
ters, which performs better on multiple low-resource
languages compared to their best monolingual mod-
els. Additionally, the authors show that for the first
time, a large multilingual model also achieves on
par with monolingual models of high-resource lan-

guages.

Domain adaptation - One of the key problems in
Deep Learning is the lack of generalization capability
across tasks and data. The subfield of Domain Adap-
tation tries to partially alleviate this problem by de-
signing techniques that are more robust to changes
in the input data distribution.

Where typically domain adaptation is applied to
NLP in the context of a distribution shift where source
and target domain are defined over the same lan-
guage [13], domain adaptation can also be framed
from a multilingual point of view. In this case, the
source and target domain correspond to a source
and target language.

A Domain Adversarial Neural Network (DANN)
[14] is one of the most popular domain adaptation
models [13]. The key hypothesis is that domain adap-
tation can be achieved via the use of features that are
both task-discriminative and domain-invariant.

Given a typical model consisting of a feature ex-
tractor and classification head, domain adaptation
is achieved by adding a domain classifier network
to the feature extractor. This domain classifier is
trained to optimally discriminate between the ex-
tracted features from the source and target domain.
When the resulting model is optimized for the task
at hand, the feature extractor is pushed to form task-
discriminative features. Additionally, the feature ex-
tracted is trained to maximize the loss produced by
the domain classifier. This pushes the feature extrac-
tor to form domain-invariant features. This combi-
nation of maximizing the loss of the domain classi-
fier with domain-invariant features while simultane-
ously training the domain classifier to optimally dis-
tinguish between the domains gives rise to an adver-
sarial setting between the feature extractor and do-
main classifier. Much like how the adversarial setting
in GANs [15] helps minimize the discrepancy between
synthetic and real data, the adversarial setting intro-
duced here minimizes the discrepancy between both
domains.

Data

For English and Dutch coreference resolution, we will
use the OntoNotes [16] and SoNaR [17] annotated cor-
pora respectively. While OntoNotes contains roughly
1.6M English tokens annotated with coreference in-
formation, SoNaR contains only TM.

One key difference between the OntoNotes and
SoNaR dataset is the annotation of singletons. Sin-
gleton entities are entities which are only mentioned
once during a text. Where SoNaR annotates single-
tons, OntoNotes does not.

viii



MELA F1 validation scores per dataset and model type
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Figure 1: Validation MELA F1 score for monolingual
coreference resolution per dataset and model type.

Monolingual coreference resolution

Experiments - First, we aim to construct a neural
baseline for Dutch coreference resolution. The previ-
ously described coreference resolution architecture
[4] serves as the basis for our system.

The original architecture uses BERT to create En-
glish subword embeddings. To adapt this architec-
ture towards the Dutch language, we replace BERT
with RobBERT [9], a Transformer which has been pre-
trained on Dutch data. Additionally, we experiment
with using XLMR [12] to produce the contextualized
embeddings.

We evaluate the monolingual coreference resolu-
tion performance of BERT, RobBERT, and XLMR by
training and evaluating all three of these models on
the English and Dutch data separately. Moreover, we
measure the zero-shot English-to-Dutch and Dutch-
to-English transfer performance to gauge the out-
of-the-box cross-lingual generalization capabilities of
these models.

In all experiments considered in this work, we
use largely the same hyperparameters as proposed
by [4]. We scaled the feed-forward neural-network
size (ffnn_size) down to 1000 from 3000. This
slightly decreases the end performance but achieves
faster training. We increased the max number
of sentences the model can process per batch
(maz_training_sentences) from 11 to 30. This al-
lowed the model to better fit the Dutch data, since
the Dutch data features on average more sentences
per document.

Results - Figure 1 shows the results of the mono-
lingual experiments. For the Dutch language, we run
the experiment twice: including and excluding the
singletons. For the Dutch and English language, Rob-
BERT and BERT are used as monolingual model re-
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MELA F1

Figure 2: Validation MELA F1 score for zero-shot
cross-lingual transfer per model type.

spectively. XLMR is used as multilingual model.
Clearly, the Dutch performance is lagging behind.
Additionally, excluding singletons from the Dutch
dataset is favorable. This is unsurprising, the archi-
tecture used is not adapted towards singletons since
it was developed with the English dataset in mind.
Interestingly, the multilingual model achieves on
par with its monolingual counterpart on the English
language but performs better on the Dutch language
(+5.99%). This is in line with the claims made by [12].
Figure 2 outlines the result for the zero-shot cross-
lingual experiment. Again we consider both the per-
formance of a monolingual and a multilingual model.
XLMR is used as multilingual model. As monolingual
model, we consider both BERT and RobBERT in each
experiment and report the best performing model.
We find that the zero-shot cross-lingual perfor-
mance of the multilingual model is much stronger
compared to that of the monolingual models. This
result indicates that, without any additional bells and
whistles, multilingual models already have a strong
cross-lingual generalization capability for the task of
coreference resolution.

Multilingual coreference resolution

Experiments - We now look to incorporate additional
English training data in the training procedure. Be-
cause of the multilingual nature of this problem, we
will solely consider XLMR in these experiments.
Three possible ways of merging the English and
Dutch datasets are investigated. This results in a
full, document-balanced, and token-balanced dataset.
These respectively contain all the available Dutch and
English data, an equal amount of Dutch and English
batches, and an equal amount of Dutch and English
tokens. While the document- and token-balanced
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Figure 3: Validation MELA F1 score on SoNaR (incl.
singletons) per dataset during multilingual training .

datasets require us to discard English data to achieve
the required balance, we are interested to see how the
model responds to these varying amounts of high-
resource data.

We train XLMR on all three datasets proposed
above. Each trained model is evaluated on both the
SoNaR and OntoNotes dataset. We perform these
sets of experiments twice, including and excluding
singletons in the SoNaR dataset both during training
and evaluation.

Results - Figure 3 shows the convergence of the
validation MELA F1 score on the Dutch language per
dataset during multilingual training. Regardless of
the dataset used, the Dutch performance converges
smoothly. This indicates that, for the amount of data
we have at our disposal, the Dutch language is not
fighting over model capacity with the English lan-
guage. Therefore, we can safely consider the full
dataset in subsequent experiments.

Table 1 compares the results achieved by XLMR
during joint multilingual training with the best re-
sults using monolingual training. Multilingual train-
ing achieves a +1.62% increase in performance on the
Dutch language compared to monolingual training.

As the zero-shot cross-lingual experiment sug-
gested, XLMR in able to leverage the multilingual
training to further increase the performance for
Dutch coreference resolution. This increase is most
notable when no singletons for the Dutch language
are included. We hypothesise this is due to the En-
glish and Dutch tasks being more harmonized when
both do not contain singletons, making it easier for
XLMR to generalize between them.

Domain Adversarial Neural Networks for
multilingual coreference resolution

Experiments - A domain classifier is added to the
Transformer encoder in the architecture. Given a
token embedding, this classifier predicts whether it
originated from an English or Dutch sentence. An
adversarial training objective is introduced: the do-
main classifier is trained to optimally classify these
embeddings while the Transformer encoder is tasked
with maximizing the domain classifier loss. To maxi-
mize this loss, the Transformer learns to minimize the
discrepancy between both language embeddings,
making them more similar. More similar embeddings
will resultin better cross-lingual transfer and thus bet-
ter multilingual training.

The resulting objective function can be formal-
ized as follows:

0, ¢?, 1/3 = argming . argmaze
Losscoref((ba l/}) - Lossdmnain (97 ¢)

where 0, ¢, and v represent the parameters of the do-
main classifier, the Transformer, and the coreference
head respectively. Losscores and Lossgomain Fepre-
sent the losses on the coreference resolution and do-
main classification tasks.

Standard deep learning optimization algorithms
typically do not allow to both minimize and maxi-
mize an objective with regard to different parameters.
However, we can leverage the standard backpropaga-
tion algorithm to achieve the desired objective func-
tion by reversing the gradients when they are back-
propagated from the domain classifier into the Trans-
former encoder [14]. If we now minimize the sum of
both losses with regard to the three sets of parame-
ters, we achieve the correct behaviour.

We train and evaluate our proposed domain adap-
tation system on the full multilingual dataset. Based
on previous insights, we use XLMR as Transformer
encoder and exclude singletons from the Dutch
dataset.

Additionally, we focus on the problem of adversar-
ial collapse. When the domain classifier is able to cor-
rectly discriminate between both domains, the Trans-
former encoder suffers from vanishing gradients [18].
In this situation, the additional of the domain classi-
fier does not give rise to domain-invariant features.

Results - Figure 4 shows the predictions made
by the domain classifier for the Dutch tokens seen
during training. The model is always predicting one
of both languages, indicating a state of adversarial
collapse.

We found that to stop adversarial collapse, the
loss produced by the domain classifier for the Dutch



Model Trained on Evaluated on MELA F1
Dutch performance

XLMR  SoNaR, train SoNaR, dev 62.20

XLMR  OntoNotes, train + SoNaR, train  SoNaR, dev 63.82 (+1.62)

English performance

XLMR OntoNotes, train

XLMR  OntoNotes, train + SoNaR, train

72.90
73.68 (+0.78)

OntoNotes, dev
OntoNotes, dev

Table 1: Comparing monolingual and multilingual training. Using full dataset, excluding singletons from the

Dutch dataset.

Dutch token classification during training

—— Predicted as Dutch
Predicted as English

70000

60000

50000

40000

30000

amount of tokens

20000

10000

0 10000 20000

30000
steps

40000 50000 60000

Figure 4: Dutch token classification during training
when adversarial collapse occurs.

Dutch token classification during training
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Figure 5: Dutch token classification during training,
no adversarial collapse. The learning rate of the do-
main classifier is equal to 1e—6.
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and English tokens needs to be equal in magnitude.
This is achieved by supplying the model with an equal
amount of Dutch and English batches as well as av-
eraging the loss per batch on the amount of tokens
within that batch.

Figure 5 shows the language predictions made by
the domain classifier for Dutch tokens seen during
training when balancing the loss. During the training
steps, the model is consistently confused about the
origin of the Dutch tokens, no collapse occurs.

The learning rate of the domain classifier can
be used to control the balance of the adversarial
regime. Figure 5 and 6 show the Dutch classification
results when the learning rate is respectively lower
and higher compared to that of the Transformer en-
coder.

As can be seen from these figures, a lower learn-
ing rate in the domain classifier leads to more wrong
token classifications. We argue that a higher learn-
ing rate in the domain classifier is favorable. Indeed,
we want the domain classifier to always be one step
ahead of the Transformer encoder, such that we are
sure the domain classifier has learned discriminative
features before these are removed by the adversarial
training objective.

While we succeed in achieving non-collapsing
training and are able to further control the balance
of the adversarial regime, this does not lead to gains
in performance. The resulting model performance
shows no significant difference compared to multi-
lingual training without domain adaptation.

One possible explanation is that the XLMR out-
puts over different languages already have a small
discrepancy. Indeed, XLMR is pre-trained using a
Translation Language Modeling objective, specifi-
cally aimed at minimizing the discrepancy between
parallel inputs. This explains the strong zero-shot
cross-lingual transfer observed. The additional sig-
nal produced by the adversarial setting, aimed at fur-
ther minimizing the language discrepancy, could be
negligible. More research is needed to confirm this.



Dutch token classification during training
(domain classifier learning rate = 2e-4)
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Figure 6: Dutch token classification during training,
no adversarial collapse. The learning rate of the do-
main classifier is equal to 2e—4.

Conclusions

In this work we designed and analyzed a domain
adaptation system for joint multilingual coreference
resolution.

We built a neural baseline using a monolingual
Dutch Transformer for the task of Dutch coreference
resolution. We found that a multilingual Transformer
trained on Dutch coreference resolution outperforms
this baseline by 5.99%, indicating the strength of mul-
tilingual pre-training.

A multilingual learning approach was designed
that achieves an additional 1.62% increasing in per-
formance on Dutch coreference resolution, by incor-
porating English data during training. This resultsina
total increase of 7.61% compared to the Dutch base-
line.

Finally, we studied the applicability of a domain
adversarial neural network to further aid the joint mul-
tilingual training. We discovered insights into how
to avoid adversarial collapse and demonstrate fine-
tuned control over the adversarial training procedure.

Unfortunately, the addition of the domain adver-
sarial neural network was unable to further increase
the performance for Dutch coreference resolution.

Future work

As a first step towards more advanced multilingual
coreference resolution, additional sources of data
over different languages could be included. However,
it is important that these datasets are similarly anno-
tated to achieve the best possible transfer.

Parallel, the success of SpanBERT could be repli-
cated in a multilingual setting. Where it was not
cost-effective to train a SpanBERT-type model for ev-
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ery possible low-resource language, our findings sug-
gest that a multilingual SpanBERT — SpanXLMR — will
be able to further increase the coreference perfor-
mance on many low-resource languages.

Additionally, further work is needed to evaluate
our proposed techniques on languages other than En-
glish and Dutch.
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1 Introduction

The aim of this Master’s Thesis is to design and analyse domain adaptation techniques applicable to mul-
tilingual transformer models, in order to build better natural language processing systems for low-resource
languages. We evaluate our technique on the difficult problem of coreference resolution, which aims to
cluster mentions in a text based on the entity to which they refer.

We limit the scope of this work by only considering coreference resolution for the English and Dutch lan-
guages.

1.1 Recent trends in the field of NLP

The field of Natural Language Processing (NLP) has seen tremendous and continuous progress over the last
years, most recently fueled by a new kind of neural model called the Transformer [1]. Transformer models
are highly parallelizable, and are easy to reuse as pre-trained models for the benefit of many different NLP
tasks. This is truly a “game changer”: in terms of significance, the recent improvements in NLP have been
compared to the breakthroughs in computer vision during 2012-2013.

Access to state-of-the-art NLP models has been more democratized than ever, primarily caused by the growth
of pre-trained model-sharing platforms [2, 3, 4]. These platforms have made it possible for researchers to
easily publish, download, and experiment with novel state-of-the-art models. Additionally, a strong commu-
nity has formed around these model-sharing platforms, further developing tools that improve the quality
of life of NLP researchers and developers, which also lowers the barrier to entry for new researchers and
developers.

Because Transformers are highly parallelizable, scale well to enormous amounts of data, and are easy to
share, researchers have been continuously pushing the size of these models - both in terms of memory,
compute, and data.

1.2 Problem Statement

These ever-growing models have been requiring ever larger datasets and resources to pre-train and fine-tune.
Unfortunately, the existing resources have in the past been primarily focusing on the English language. For
many of the other languages in the world, either not enough data exists, or not enough resources to perform
research are allocated to these problems, or both. This has caused a growing performance gap between
NLP for English (and other high-resource languages like Spanish and Chinese) and NLP for languages with
less data available (further referred to low-resource languages; e.g., Dutch, Swahili, and Urdu). This gap
causes a major part of the global population to miss out on state-of-the-art NLP applications, such as: text
summarization, question answering, and smart digital assistants.

In light of the - still growing — resources for high-resource NLP, a solution needs to be found to ensure low-
resource languages can stay up to speed. Investing in new and better resources for less common language is
a possibility, however it is exceedingly expensive and unscalable with regard to the total number of languages
and dialects spoken in the world today. Thus, there is a need for novel techniques that can efficiently leverage
the existing resources to provide state-of-the-art results for a wide variety of languages, without requiring
much additional work per low-resource language.

One promising research direction investigates the use of multilingual models to better generalize NLP tasks
across the language barrier. These multilingual models have been pre-trained using a mixture of several
different input languages — sometimes up to one hundred, including both high-resource and low-resource
languages. Initial work has shown that these multilingual models are able to compete with the best mono-
lingual models for high-resource languages, while possible surpassing the best monolingual performance
on low-resource languages [5]. However, it remains unclear for which downstream tasks and which low-
resource languages the application of multilingual models is favorable.

A different research track explores the application of domain adaptation to the field of NLP. Domain adapta-
tion in general aims to develop techniques which allow deep learning algorithms trained on a source domain



to better generalize towards a given target domain. In the context of NLP, most domain adaptation work is
typically focused towards fine-tuning a model to a different textual genre [6], within the same language (e.g.,
adapting a pre-trained Transformer trained on a mixture of textual genres to medical texts).

To the best of our knowledge, work exploring the application of domain adaptation techniques to multilingual
NLP - in order to help a model better generalize across the language barrier - is scarce.

However, a compelling case can be made for the reuse of existing data from a high-resource language to
increase the performance on a low-resource language. Intuitively, both language-understanding and world-
knowledge is needed to achieve high coreference resolution performance. While adocument in one language
and its translation in another can differ in terms of how a certain piece of information is presented, we can
expect the entities represented within the document to remain similar. Based on this intuition, we argue
it is possible to leverage the world-knowledge contained in documents of one language for the benefit of
coreference resolution on another language, given that we can make abstraction of the difference in how the
information is presented using both languages.

1.3 Main Contribution

In this work, we aim to design and analyse models for the task of coreference resolution on a low-resource
language, using multilingual Transformers and domain adaptation systems. We evaluate our models using
Dutch as a low-resource language and English as a high-resource language.

The main contributions of this work are the following:
+ we set a baseline for neural Dutch coreference resolution,

+ we show the applicability of multilingual models and multilingual training to Dutch coreference resolu-
tion - thereby surpassing our previous baseline — and,

+ we propose and analyze a domain adaptation system for multilingual coreference resolution.

1.4 Outline

This work is outlined as follows. Section 2 describes the task of coreference resolution and its importance
with regard to the overall field of NLP. The available datasets are discussed as well as the evaluation met-
rics used to benchmark coreference performance. Section 3 gives an overview of the Transformer model,
which has recently become the dominant architecture in the field of NLP. A high-level explanation of the ar-
chitecture is given. Furthermore, the application of the Transformer model to the problem of coreference
resolution is discussed. Finally, efforts using Transformers to tackle the low-resource language problem,
such as multilingual transformers, are explored. In section 4, we give a brief introduction to the problem of
domain adaptation and outline the domain adaptation technique we will be using in this work.

The first experiment, discussed in section 5, serves as a baseline for the rest of our work: we validate existing
state-of-the-art results on English coreference resolution and set a Dutch coreference resolution baseline.
Additionally, we investigate the cross-lingual transfer between performance on English and Dutch corefer-
ence resolution. In the second experiment, outlined in section 6, we show that multilingual models can
effectively perform coreference resolution on multiple languages at the same time and can greatly improve
the cross-lingual transfer between English and Dutch coreference resolution. We show that our multilingual
model increases performance for Dutch coreference resolution. Section 7 discusses our final experiment,
where we study the use of domain adaptation to further increase the effectiveness of multilingual corefer-
ence resolution.

Finally, section 8 gives an overview of our main takeaways and we provide an outline for future work in section
9.



2 Coreference Resolution

Coreference resolution is the task of clustering mentions in a document based on the entity to which they
refer. For example, the sentence:

[[My], laptop]. does not fit in [[my]; bag]; because [it] is too small.

contains the following entities: the person saying the sentence, that person’s laptop, and that person’s bag.
The sentence contains several mentions — indicated by the brackets — that refer to these entities — indicated
by the subscripts. As we can seeg, the possibility exists for these mentions to be nested.

Although coreference resolution is not solved (yet), good understanding of the problem is required for many
important downstream NLP applications. One very important area is that of information extraction [7], which
aims to convert unstructured documents to structured data, in simplified layman’s terms: transform text into
database entries. Here, coreference resolution is essential to maximally capture all information expressed
in the text.

To indicate how difficult this problem is, consider the slightly adapted sentence
[[My]; laptop]. does not fit in [[my]; bag]; because [it], is too big.

While the mentions and entities of the sentence remain unchanged, the clustering of the mentions is now
different. Clearly, a good understanding of the context and semantics of the text is needed for proper coref-
erence resolution. Sometimes, very large sections of text need to be considered to properly understand the
context of a sentence.

Additionally, the world knowledge needed to perform coreference resolution should remain up to date. For
example, the prime minister of Canada can refer to several entities, based on the time at which the sentence
was uttered.

The situations described above are often trivial for humans, however they are notoriously difficult for ma-
chines.

In what follows, we give a slightly more in-depth explanation into the possible types of coreference resolution
in subsection 2.1. The available datatasets we will use throughout this work are highlighted in subsection
2.2. Finally, the standard evaluation metrics for coreference resolution are explained in subsection 2.3.

2.1 Types of coreference resolution

Having described the goal of coreference resolution and several difficulties, we now give an overview into
the different types of coreference resolution. For this overview, we will not go in-depth, since a detailed
understanding of coreference resolution is not required to understand this work. The aim of this sectionis to
gather enough knowledge about coreference resolution to compare the different datasets in subsection 2.2.
The reader who is solely interested in the deep learning aspect of this work can safely skip this subsection.

The provided overview is based on that of [8].

2.1.1 Identity coreference

This is one of the most frequent forms of coreference. In identity coreference, two mentions refer to the
exact same object.

In college, [Bert]; is top of his class. [The ambitious student], has a bright future.

[Emmal]s, is currently in high-school. [She], still has a long way to go.



2.1.2 Part/whole coreference

A partial coreference relationship is established when a mention refers to a part of a previously mentioned
entity. This is typically a component of a previously mentioned entity or a member in a set.

[The airplane], is ready for take-off, [the engines], have been checked.

Although a partial coreference relationship occurs, the mentions strictly do not refer to the same entity.

2.1.3 Type/token coreference

A relationship is established between two mentions that refer to a similar type of entity, even though the
entities are not exactly identical.

| prefer to live in [the small house]; while my partner prefers [the big house],.

| can't decide between [the red iPhone]; or [the purple iPhone],.

2.1.4 Time-indexed coreference

Time-indexed coreference links refer to the same entity only at a certain point in time. Consider the following
situation.

Up until his death, [prince Philip]; was [the husband of Queen Elizabeth II],.

The link between prince Philip and the husband of Queen Elizabeth Il is time-dependent, as is made clear by
the time indication up until his death.

2.1.5 Metonym coreference

A figure of speech is used to refer to a previously mentioned entity. The link is established because the figure
of speech closely relates to the mentioned entity.

[Queen Elizabeth I1], issued a statement concerning the departure of Harry and Meghan. [The crown],
ensured that Harry and Meghan remain beloved members of the royal family.
2.1.6 Posessive coreference

A mention is used to describe a posessive relationship.

[1], don't like [my], bag, it is too big.

2.1.7 Bound anaphora coreference

Bound anaphora are used to link properties of general categories, instead of individual entities.

[All dogs], like playing with [their]; toys.

2.1.8 Appositions

During an apposition, two elements are placed side-by-side and one identifies the other and gives extra in-
formation.

[Mr. Smith],, [the English teacher],, was known to give very difficult exams.



2.2 Available data

English data: The MUC' and ACE? corpora were for a long time the standard corpora for English supervised
coreference resolution learning. However, these corpora suffered either from having a limited size or not con-
sidering all possible entities for annotation [9]. Additionally, these corpora showed low Inter-Annotator Agree-
ment [10]. As a partial aid to these problems, the OntoNotes corpus was introduced [11, 12]. The OntoNotes
corpus consists roughly of 1.6M English words, 950K Chinese words, and 300K Arabic words. The entire cor-
pus has been annotated with a layer of coreference resolution information. Additionally, a large part of the
corpus has been annotated with additional layers of syntax, propositions, word sense, and named entities in-
formation. Indicating the quality of this corpus, these annotations achieve a 90% inter-annotator agreement
[11]. Because of its size, high-quality annotations and additional layers of information, the OntoNotes corpus
has become the de facto corpus for English coreference resolution. For the rest of this work, we will only
consider the English part of this corpus.

The use of the OntoNotes corpus was further popularized by the CONLL-2011 and CoNLL-2012 shared task
[13, 9]. These tasks also paved the way for a more standardized evaluation scenario for coreference resolu-
tion systems [14] (which we will describe in the next subsection).

Dutch data: The SoNaR-1 corpus [15], consisting of 1M Dutch words, was created in light of the STEVIN-
program between the Dutch and Flemish government to promote the creating of a large written corpus span-
ning several variants of the Dutch language. The corpus is annotated with layers of coreference information
as well as part-of-speech tagging, lemmatization information, and named entity recognition information [15].
The corpus was annotated using already existing guidelines for the annotation of Dutch coreference [16, 17].

Comparison: Since our aim is to build a multilingual coreference resolution system for Dutch and English, it
is crucial to understand the differences between the English (OntoNotes) and Dutch (SoNaR-1) data we will
be using. In what follows, we describe the different statistics characterizing these datasets. Additionally, we
also provide a brief comparison with regard to the exact types of coreference resolution annotated in both
datasets.

For the SoNaR dataset, all the types of coreference as described in subsection 2.1 are annotated. The
OntoNotes corpus is only annotated with identity coreference links or appositions.

The OntoNotes dataset contains roughly 1.6M English tokens over 3.493 different documents. SoNaR con-
sists of IM Dutch tokens over 615 documents. The average document in the OntoNotes dataset is 458 tokens
long while the average SoNaR document contains 1.626 tokens.

One key difference between the OntoNotes and SoNaR dataset is the annotation of singletons. Singleton enti-
ties are entities which are only mentioned once during a text. Where SoNaR annotates singletons, OntoNotes
does not.

For a more detailed overview of both corpora, we refer to the official OntoNotes and SoNaR annotation
guides: [9] and [17] respectively.

train/dev/test split: For the OntoNotes dataset, we use the standard train/dev/test split proposed by [9]. For
SoNaR, the train/dev/test split from [18] is taken.

2.3 Evaluation metrics

Earlier works in coreference resolution suffer from a discrepancy between the evaluation metrics used and
evaluation scenarios considered [19]. Designing a satisfying coreference resolution metric is a challenging
task. One of the first problems that arises is how to deal with spans of mentions. Indeed, a coreference
system might correctly link a span of mentions to an entity, but the span might be slightly too large or slightly
too small. To what extent is this link correct? A second problem considers how to define accuracy and
recall on the predicted coreference links. Many different metrics exist [20, 21, 22, 23, 24] and researchers

Thttps://catalog.1ldc.upenn.edu/LDC2003T13
2https://catalog.1ldc.upenn.edu/LDC2006TO6



have agreed that each metric has its pros and cons, depending on the considered scenario and downstream
application [9].

While introducing the CoNLL-2012 Shared Task, Pradhan et al. [9] proposed to standardize the metrics and
scenarios used to evaluate coreference resolution systems. Only exact spans of mentions are considered
correct, too large or too small spans are completely false. The authors propose to use the MUC [20], B-CUBED
[21], and CAEF, [22] metrics. To be able to unambiguously rank coreference resolution systems, the authors
propose to use the average of the previous three mentions, called the MELA metric [24]. This standardization
effort was well received. In a follow-up work [14], the authors tackle some remaining ambiguity in the imple-
mentation of the standardized metrics and release a well-tested open-source reference implementation for
these metrics. We will use this open-source implementation to validate our models throughout this work.

In what follows we give a high-level overview into how these metrics are calculated. For an in-depth expla-
nation tackling the edge-cases, we refer to Pradhan et al. [14]. The coreference links in a document can be
viewed as a set of sets: a document contains a set of unique entities mentioned in that document, and each
entity is a set of mentions that all referring to that entity. Even though a coreference resolution system needs
to only predict z — 1 coreferent links to add x mentions to one entity set, this clustering eventually produces

@ coreferent links belonging to that entity (one for every pair of mentions of the entity).

Consider g, the set of sets representing the ground-truth coreference links contained within the document
and P, the set of sets representing the predicted coreference links.

The MUC metric is a link-based metric, the precision is calculated by dividing the total amount of common
links in G and P with the amount of links in P while the recall is defined by dividing the total amount of
common links with the amount of links in G. Because the MUC metric is link-based, it has some drawbacks:
entities consisting only of one mention aren’t accounted for (since they produce no links) and a prediction
grouping all mentions under a single entity achieves 100% recall (since all possible links are present).

The B-CUBED metric calculates a precision and recall score per mention and averages those scores to
achieve a document-level metric. For each mention m, the precision is calculated by dividing the size of
the intersection of the set containing m in G and P with the size of the set containing m in P. The recall for
mention m is defined by dividing the size of the intersection with the size of the set containing m in G.

The CAEF, metric calculates precision and recall at the entity level. An entity-similarity metric ES(a,b) is
defined between two entities ¢ and b. A mapping

m:G— P

is defined between elements of G and P. The mapping is chosen to maximize the resulting summed entity-
similarity over the linked entities:

m = argmaxrm Z E]\/[(g? m(g))
g9e€g

The precision p and recall r are defined as:

> gec EM(g,m(g))
> pep EM(p,p)

_ Dogeq EM(g,m(g))
B deg EM(g,9)

In the rest of this work, we will report only the MELA metric, which consists of a uniformly weighted sum of
the MUC, B-CUBED, and CAEF, metric. More specifically, we will report on the MELA F1 score, which is the
harmonic mean of the MELA precision and recall scores.



3 Transformers

Recently, the Transformer [1] model has become the dominant architecture for many NLP tasks, including
(but not limited to): machine translation, document classification, and coreference resolution.

In subsection 3.1, we give an overview of the Transformer architecture. Since this architecture has become
well-known throughout the field of deep learning, we will limit the discussion to a high-level overview (the
reader who is familiar with Transformers can safely skip this subsection). We explain how the Transformer
architecture can be leveraged to perform end-to-end coreference resolution in subsection 3.2. Finally, sub-
section 3.3 addresses the application of Transformers to low-resource languages and multilingual Trans-
formers.

3.1 Transformer Architecture

Introduced by [1], the Transformer model first served as a sequence-to-sequence architecture. Sequence-to-
sequence architectures are applied to problems such as machine translation and text summarization, where
both the input and output is a sequence. These models consist of an encoder and decoder, which are respec-
tively used to map the input sequence to a latent representation and map this latent representation to the
output sequence. Whereas previous state-of-the-art sequence-to-sequence architectures rely on recurrent
or convolutional operations to encode and decode sequences, the Transformer solely relies on feed forward
operations and an attention mechanism to achieve state-of-the-art sequence-to-sequence results. Without
this reliance on recurrence, the Transformer architecture is highly parallelizable.

Figure 1gives a schematic overview of the Transformer architecture. Subsection 3.1.1 starts by describing the
attention mechanism. How a sentence is pre-processed before being passed to a Transformer is addressed
in subsection 3.1.2. Subsection 3.1.3 and 3.1.4 respectively describe the encoder and decoder module of
the Transformer. Finally, subsection 3.1.5 explains how the original Transformer architecture is adapted to
create Transformer architectures such as BERT [25] and GPT [26].

3.1.1 (Self-)Attention mechanism

The (self-)attention mechanism is the bread and butter of the Transformer architecture. It allows the model to
create contextualized embeddings. For example, in the sentences The Titanic will not sink and Put the dishes
in the sink, the semantics of the word sink are clearly context dependent. When forming an embedding for
the work sink, attention allows the Transformer to attend to the different words in the sentence, leading to a
better understanding of the context.

In this subsection, we describe the (self-)attention mechanism. In subsequent subsection, we will position
this mechanism with regard to the rest of the Transformer architecture.

Consider two sequences of embeddings, (z;)i=Y and (y])j 1, Which will serve as |nput to the attention mech-
anism. The attention mechanism will transform the sequence of embeddings (yj) wh|Ie attending to

(z;)=¥. In the case of self-attention, both inputs are the same sequence: (z;)i=V = (yj)J - We can denote
these sequences as the matrices X and Y respectively, with dimensions (V, k) and (L, h) where h represents
the dimension of one token embedding.

First, a query, key, and value embedding are created per token embedding. Both the query and key embed-
dings have dimension k, while the value embeddings has dimension v. The query sequence (g; )3_1 is formed
by applying a learned linear transformation to each y;. This linear transformation can be denoted via the ma-
trix W4, having dimensions (h, k). The resulting matrix operation can be denoted as @Q = YW¢, where @ has
dimensions (L, k). Similar, the key and value are formed by applying a linear transformation to each z;. This
results in the following matrix operations: K = XW* and V = XW". The dimensions of K equals (N, k)
and the dimension of V equal (N, v).

Now that the query, key, and value embeddings are available, we seek to create new, contextualized embed-
dings for y;. We calculate an attention score s, ; between z; and y; by taking the dot product of ¢; and ;.
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Figure 1: The original Transformer architecture. (Left) Encoder-decoder architecture consisting of multi-
headed attention blocks, layer normalization and feed forward neural networks. (Middle) Multi-headed at-
tention mechanism. (Right) Scaled-dot product attention. Images from Vaswani et al. (2017) [1].

This is denoted in matrix form as follows: S = QK”, where S;: = s;ji. Every entry in S is scaled by a factor
ﬁ, which leads to more stable gradients (a detail on which we will not elaborate). Finally, every row of S
is passed through the softmax function, such that the attention scores associated with embedding y; are

T

normalized. The resulting operation becomes S = softmazmw(%).

These normalized attention scores S are now used to construct a linear combination of v; for every y;, which
we will denote as z;. This is given via the matrix operation: Z = SV, where the dimension of Z is equal to
(L,v).

Z now contains for every element in the input sequence (yj)j:if a new embedding that was formed by at-
tending between the embeddings of (x;){=¥ and (yj)gjf. In a multi-headed attention mechanism, multiple

Z matrices are constructed, denoted Z,, Z1, ..., Z,,,_1 where m represents the number of heads. For each of
these matrices Z, the linear transformations to create , K, and V differ.

All these Z matrices are concatenated along the second dimension, creating a final matrix with dimension
(N,m - v). The output of the attention mechanism, X’, is formed via a final linear mapping, Wy;,., which
transforms this matrix to dimensions (N, h).

The following equations summarize the multi-headed attention mechanism and correspond to the middle
and right part of figure 1:

Qo =YW{ M

Ko = XW§ (2)

Vo = XWg (3)
QoK{

Wo 4)

Zy = S0ftmat,ew(

Vk



Z = concat(Zy, 21, ...Zop—1) (5)
X/ — ZWfinal (6)

3.1.2 Pre-processing

Before we hand a piece of text to a Transformer, we first need to apply some pre-processing steps. First, we
need to tokenize the text. Tokenization aims to split an input text into a limited amount of distinct (sub)words.
While the actual splitting of the text into (sub)words is trivial, the decision which distinct (sub)words are
used is not. The most famous tokenization schemes include Byte-Pair Encoding (BPE) [27], WordPiece [28],
and SentencePiece [29]. Each of these techniques tries to learn an optimal set of (sub)words, in which to
tokenize the input text. Animportant hyperparameter here is the vocabulary size, the total amount of distinct
(sub)words the tokenizer considers. A low vocabulary size reduces the complexity of the model, since less
unique (sub)words are considered. However, each (sub)word is less expressive.

Once the input text is tokenized, every (sub)word gets embedded. Additionally, a positional embedding is
added to each (sub)word in the input text. This positional embedding consists of a signal the model can
learn to leverage to estimate which position a (sub)word has in its input sentence.

3.1.3 Encoder

The encoder is used to form a contextualized latent representations of the input sequence. These contextu-
alized representations are then used by the decoder to generate text in the target domain.

As previously mentioned, the input sequence is first pre-processed. The resulting sequence of embeddings
is handed to the encoder.

The encoder consists of N stacked encoder layers, each identical in architecture — as can be seen in figure
1. One encoder layer consists of two stacked sublayers: one multi-headed self-attention layer and one feed-
forward layer. After each sublayer, the output of the sublayer is summed with its input (via a skip-connection)
and normalized [30]. This normalized result is passed to the following (sub)layer.

While the multi-headed self-attention layers transforms a sequence as a whole, the feed-forward network is
applied in parallel to each embedding in the sequence.

3.1.4 Decoder

The decoder consists of a stack of NV decoder layers. The decoder only differs from the encoder in two ways:
(i) a decoder layer features an additional sublayer between the self-attention sublayer and the feed-forward
sublayer, called an encoder-decoder attention sublayer, and (ii) the decoder is used in an autoregressive
manner.

The encoder-decoder attention sublayer is very similar to the self-attention sublayer. Instead of calculating
an attention score between the input of the layer and itself, the encoder-decoder attention mechanism cal-
culates attention between the input of the layer and the embeddings outputted by the encoder. This allows
the decoder to efficiently reference the contextualized embeddings generated by the encoder model.

While the encoder model takes as input an entire sequence and calculates attention between every pair of to-
kens in this sequence, the decoder model takes as input a partially generated sequence and autoregressively
predicts the next word based on the contextualized embeddings generated from this partially generated se-
quence. In each step of this iterative algorithm, the self-attention mechanism is only applied between the
pairs of tokens representing already generated words.

3.1.5 BERT- and GPT-like models

The success of the original Transformer model prompted many researchers to develop their own adaptations
of this architecture. Specifically, researchers aimed to apply the Transformer architecture to non-sequence-
to-sequence problems. We will discuss two of the best-known architectures, BERT [25] and GPT [26] and



highlight their differences. The most popular Transformer models today all somewhat resemble either BERT
or GPT, although a lot of research focuses toward creating novel Transformer architectures. Additionally, we
explain how these models can be pre-trained on large unlabeled datasets and subsequently fine-tuned on a
smaller downstream dataset. It is partially due to this successful pre-training and easy fine-tuning that BERT
and GPT have become so popular.

BERT-like models: The BERT model [25] consists of only a stack of encoder layers, the decoder from the
original Transformer architecture is omitted. Thus, given an input sequence, BERT outputs a sequence of
contextualized embeddings which can be used for further downstream tasks, named the sequence output.
Additionally, BERT produces one extra embedding, named the pooled embedding, which serves to summa-
rize the entire input sequence. This pooled embedding is a simple learned linear transformation of the first
embedding of the sequence output.

The BERT model is pre-trained on two objectives: (i) the Masked Language Modelling (MLM) objective and
(i) the Next Sentence Prediction (NSP) objective. Both of these objectives are self-supervised, meaning that
they require no labeled data to be trained. This, together with the high grade of parallelism, allows the BERT
model to easily scale to very large amounts of data during pre-training.

During pre-training, BERT is given a concatenation of two sentences from a training corpus. These sentences
are either adjacent sentences from the corpus or sentences picked randomly from the corpus. In both sen-
tences, some words are randomly masked. BERT processes these input sentences and is tasked with (i)
predicting the masked words (MLM objective) and (ii) predicting whether both sentences were originally
adjacent (NSP objective), based on the contextualized embeddings formed. Performing well on these objec-
tives requires excellent language skills. Interestingly, work has shown that by pre-training these objectives,
BERT develops attention heads which are specialized towards mainstream NLP tasks like: POS tagging,
parsing, named entity recognition, semantic role labeling, and coreference resolution [31].

Once the BERT model is pre-trained, it can be used for many downstream tasks. Typically, a head architecture
is introduced which leverages either the sequence output or pooled output for world-level or sentence-level
tasks respectively. This head architecture is trained from scratch on a smaller downstream dataset. During
this downstream training, the possibility exists to either freeze or continue updating BERT's parameters.

Different variations of the BERT model differ in total number of layers used, as well as the size of the feed-
forward network and the width of the token embeddings. Additionally, these models can be pre-trained on
different dataset or even using different objectives.

GPT-like models: Whereas BERT is said to consist of the Transformer encoder, GPT is based on the Trans-
former decoder. GPT is a stack of decoder layers, where the encoder-decoder attention sublayer has been
omitted. The main difference between BERT and GPT concerns how the self-attention is calculated. In BERT,
the self-attention layer computes attention between all the pairs of input tokens. In GPT, self-attention is
exclusively applied between a token and all its token to the left. This is sometimes referred to as left-to-right
attention.

GPT aims to generate sequences. This is done in an autoregressive fashion. An input sequence is fed into
the model. The contextualized output embeddings (using left-to-right attention) are used to predict the next
word in the sequence. This next word gets concatenated with the original input sequence. The resulting
sequence is again used to predict the new next word.

Pre-training GPT happens via a standard Language Modelling (LM) objective. Given a training corpus, GPT is
fed parts of sentences and asked to predict the next word. Using the original corpus, the next word prediction
of GPT can be evaluated and optimized.

3.2 End-to-end coreference resolution using Transformers

Where previously state-of-the-art results on the task of coreference resolution were attained via rule-based
systems (such as [32]), end-to-end deep learning models have lately been consistently achieving new state-
of-the-art results. Like with many NLP tasks, these deep learning systems have greatly benefited from the
arrival of Transformer-based models.
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The first successful end-to-end coreference resolution architecture that does not rely on syntactic parser or
hand engineered features was introduced by [33]. The authors propose an architecture that, for each span of
words in a text, assigns a previous span that refers to the same entity. Span pruning is used to filter out spans
that do not refer to an entity. Based on these predictions, a final coreference clustering can be extracted.

Figure 2 shows the architecture for end-to-end coreference resolution proposed by Lee et al. [33]. This
architecture consists of two consecutive steps: a mention scoring step and a coreference scoring step. In
what follows, we will untangle this architecture in more detail.

The mention scoring step is described in subfigure 2a. Given embeddings of an input sequence, the archi-
tecture computes span representations for each span of words in the input sequence. Only spans shorter
than a predefined number of words are considered (as too limit the total possible amount of spans). Each
span representation is formed by concatenating (i) the word embedding of the span’s first word, (ii) the word
embedding of the span’s last word, (iii) a learned weighted average over all the word embeddings contained
in the span, and (iv) a feature vector encoding the length of the span.

For each produced span representation, the model computes a mention score via a fully-connected feed-
forward neural network. The spans are ranked by mention score and a top amount of spans are kept while
the rest are discarded. This pruning greatly reduces the computational needs of the subsequent steps. The
amount of spans kept is defined as a fraction of the input sequence length. Additionally, top scoring spans
that (partially) overlap with a better scoring span are also pruned. While aggressively pruning spans has a
positive impact on the model complexity, it should be noted that a low mention recall (due to over aggressive
pruning) will have a detrimental effect on the resulting performance of the model.

The coreference scoring step is described in subfigure 2b. For each pair consisting of a span and one of its
first K antecedent spans, an antecedent score is calculated by passing the span representations through
a fully-connected feed-forward neural network. Only K antecedents are considered to reduce the computa-
tional complexity. For every span-antecedent pair, a coreference score is calculated by summing the mention
scores for the span and the antecedent together with the antecedent score of this pair.

The final coreference prediction of the model is produced by the most likely clustering of the spans based
on the calculated coreference scores. Indeed, simply taking the most likely antecedent for each span does
not produce the overall most likely clustering.

For a given mention, multiple antecedents are valid as long as they give rise to the same final coreference
clustering. Therefore, the architecture is trained to optimize the log-likelihood of all the possible antecedent
links implied by the gold truth coreference clustering.

Like with many NLP systems, the final performance is strongly impacted by the quality of the initial world-level
embeddings. Originally, [33] used a bidirectional LSTM [34] to produce contextualised word-embeddings
of the input sequence. Both [35] and [36] found better results when using BERT to produce (sub)word-
embeddings.

Additionally, [37] introduced SpanBERT to achieve even better performance. SpanBERT is specifically pre-
trained to produce high-quality span embeddings. To this end, the authors pre-train SpanBERT by replacing
the Next Sentence Prediction (NSP) objective with a Span-Boundary objective: given a sentence containing
a masked span, the model is required to predict a masked word in this span using the boundary words of the
span.

3.3 Transformers for low-resource languages & Multilingual Transformers

Lately, a plethora of low-resource language-specific pre-trained models have been developed [38, 39, 40, 41].
While these models are a good first step in getting low-resource NLP up to speed with English NLP, they still
require (i) a large corpus to pre-train and (ii) language-specific annotated datasets for fine-tuning, both of
which are not always readily available for low-resource languages.

Other efforts have been directed towards building multilingual Transformers [42, 5]. These models are pre-
trained on a multitude of languages at the same time and aim to generalize several language understanding

1



General Electric Electric said the the Postal Service  Service contacted the the company

Mention score (sm) O O o @ O
Span representation (g) CID CI:I] CI:D CI:I:)

(I1)
Span head (3) i }L 2\
Buciom ST @@ 09 @9 ©9 @9 @9 @9 @9 ©9

EERERELE

Word & character
embedding (x) m

General  Electric said the Postal Service  contacted the company

-5
o4
o4
oA
o
o

(a) The first mention scoring step. For each span up to a predefined length, a mention score s,, is calculated. This score
is calculated via a fully-connected neural network which takes a span representation g as input. Each span representation
consists of two embeddings representing the first and last word in the span (z*), and a learned linear combination of all
the embeddings in the span (z). The contextualized word embeddings & are formed via a Bidirectional LSTM. Additionally,
afeature vector used to encode the length of the span is considered when calculating s,,, (not shown on the figure). Based
on the calculated mention scores, the top-scoring non-overlapping spans are considered as potential mentions and serve
as input to the second step of the architecture (not shown on the figure).
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(b) The second coreference scoring step. Given the top-scoring mentions from the previous step, an antecedent score s,
is calculated between each mention and its K antecedents. The antecedent score s, is calculated via a fully-connected
neural network using the span representations g of both the mention and its antecedent. The resulting antecedent score
is summed with the mention scores s,,, of both the mention and the antecedent to form the coreference score s. For a
given mention, all the coreference scores for the antecedents are normalized. Given all mentions and resulting corefer-
ence scores, the most likely coreference clusters are extracted (not shown on the figure).

Figure 2: End-to-end coreference resolution architecture. Subfigure (a) shows the first mention scoring
step. Subfigure (b) shows the second coreference scoring step. Images from Lee et al. (2017) [33].
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tasks (e.g., the recognition of named entities in a text) across the different languages.

In [42], XLM is introduced. the authors pre-train a 12-layer Transformer encoder on multiple languages and
achieve state-of-the-art results on cross-lingual natural language interference and (un)supervised machine
translation. Interestingly, their model achieves better perplexity on some low-resource languages compared
to a Transformer directly trained on these languages. This finding indicates how a multilingual model might
perform better on low-resource languages when not enough data is available to fully pre-train a model specif-
ically for these languages.

Similar to how BERT was pre-trained, the authors pre-train XLM using a Masked Language Modelling (MLM)
objective. When no parallel data is available for the languages on which XLM is being pre-trained, an addi-
tional Causal Language Modelling (CLM) objective is added. This CLM objective aims to predict the word
following the given sequence. When parallel data is available, the authors propose Translation Language
Modeling (TLM), a novel objective. During TLM, two parallel sentences over different languages are concate-
nated and fed to the model. In both sentences, words are randomly masked. Similar to the MLM objective,
the model is asked to predict these words. Via this objective, the model can learn to leverage context in the
parallel sentence. The authors reason that this additional objective helps align the embeddings of similar
words and contexts across the language barrier. Additionally, the authors show that this objective has a high
impact on the performance of the model on downstream cross-lingual tasks.

Building on top of XLM, XLM-R [5] achieves even better results by scaling the model capacity and increas-
ing the amount of data used during pre-training. The result is a large model, containing 270M parameters,
which performs better on several low-resource languages compared to their language-specific models. Ad-
ditionally, the authors show that, for the first time, a large multilingual model can also achieve on par with
monolingual models on high-resource languages.
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4 Domain Adaptation

One of the key problems in deep learning is the lack of generalization capability across tasks and data. A
deep learning model which achieves great results on the data distribution on which it was trained can perform
much worse when evaluated on a different distribution. This is typically the case when the data presented
to the model for evaluation was collected in a different way, describes a slightly different task or when the
data distribution naturally drifted over time between the moment of training and the moment of evaluation.
The subfield of domain adaptation tries to partially alleviate these problems by designing techniques that
are more robust to changes in the input data distribution.

In section 4.0.1, we formally describe the goals of domain adaptation and consider the link between domain
adaptation and cross-lingual learning. Domain Adversarial Neural Networks (DANN), one of the most popular
domain adaptation techniques, is outlined in section 4.0.2. We explain the mechanism of DANN and highlight
why this technique in particular has received much attention in the field of domain adaptation.

4.0.1 Domain Adaptation

A domain D = {X, P(X)} is defined by a feature space X and a probability distribution over this feature
space P(X). Atask T = {¥, P(Y|X)} consists of a label space ) and a likelihood function over the label
space given the feature space P(Y'|X). The objective of a typical supervised learning algorithm is to model
this likelihood P(Y|X), given a set of samples (z;, ;)= from the feature space with corresponding labels

[6].

Consider a source domain D, = {X, P;(X)} and a target domain D, = {X, P,(X)}. While the feature space
X of both source and target domain are identical, this is not the case for the probability distribution P,(X)
and P;(X). In the case of domain adaptation, we aim to model the likelihood P(Y|X) of a task 7 given a
source domain D, such that the modelled likelihood is optimally applicable to the same task 7 applied to the
target domain D;. In this case, the model is said to generalize from the source domain to the target domain.

The situation described above is sometimes also referred to as transductive transfer learning [43]. This is
not to be confused with inductive transfer learning (sometimes just referred to as transfer learning) where
the aim is to learn a task 7; using a related task 7,. The key difference is that transductive transfer learning
considers the same task over two domains. While inductive transfer learning is the mechanism by which we
are able to leverage a pre-trained Transformer for a downstream task, we will not explicitly describe inductive
transfer learning in this work.

Typically, the problem of domain adaptation is only considered when more data from D, is available com-
pared to data from D,. If this were not the case, it would be more efficient to directly model P(Y'| X)) using
samples from D;. A distinction should be made between supervised and unsupervised domain adaptation.
In the supervised case, labeled samples from D, are available. In the unsupervised case, no labeled samples
from D, are considered. However, unlabeled data from D, might still be abundant.

Where typically domain adaptation is applied to NLP in the context of a distribution shift P,(X) # P,(X)
where source and target domain are defined over the same language [6], domain adaptation can also be
framed from a multilingual point of view. In this case, the source and target domain correspond to a source
and target language.

4.0.2 Domain Adversarial Neural Networks

Many different domain adaptation techniques exist. In this work we will only consider the technique of Do-
main Adversarial Neural Networks (DANN). For a more detailed overview into domain adaptation for NLP, we
refer to Ruder’'s comprehensive thesis on neural transfer learning for natural language processing [43] or a
recent survey paper by Ramponi et al. [6].

DANNs were first introduced by Ganin et al. [44] in the context of computer vision models. The authors
argue that domain adaptation can be achieved via the use of features that are both task-discriminative and
domain-invariant.
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Given a typical model consisting of a feature extractor and classification head, domain adaptation is achieved
by adding a domain classifier network to the feature extractor. This domain classifier is trained to optimally
discriminate between the extracted features from the source and target domain. When the resulting model
is optimized for the task at hand, the feature extractor is pushed to form task-discriminative features. Addi-
tionally, the feature extracted is trained to maximize the loss produced by the domain classifier. This pushes
the feature extractor to form domain-invariant features. This combination of maximizing the loss of the
domain classifier with domain-invariant features while simultaneously training the domain classifier to op-
timally distinguish between the domains gives rise to an adversarial setting between the feature extractor
and domain classifier. Much like how the adversarial setting in GANs [45] helps minimize the discrepancy
between synthetic and real data, the adversarial setting introduced here minimizes the discrepancy between
both domains.

DANNSs are a widely applicable technique. Virtually any deep learning model can be extended with a domain
classifier and augmented with the adversarial loss. One downside is that the resulting model will only be
able to model features that are shared over both domains. Features that are only available in source or
target domain get removed during the adversarial process.

In section 7.1 we discuss the training of a DANN directly applied to our proposed model, in more detail.
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Figure 3: End-to-end coreference resolution mention scoring using a Transformer encoder. Image adapted
from Lee et al. (2017) [33]. See section 3.2 for a detailed explanation.

5 Monolingual training

First, we aim to construct a baseline for Dutch coreference resolution using deep learning systems. We
experiment with different Transformer models to build this baseline. Additionally, we compare our results
with existing state-of-the-art English and Dutch coreference resolution baselines.

In subsection 5.1, we discuss the models used for this experiment as well as any relevant hyperparameters.
The exact experiment setup is given in subsection 5.2. Subsection 5.3 describes the attained results and
positions them with regard to the existing state-of-the-art. Finally, subsection 5.4 concludes the monolingual
training experiment.

5.1 Models

The previously described coreference resolution architecture [35] (see section 3.2 for a detailed overview)
serves as the basis for our model. This architecture relies on a Transformer encoder to generate contex-
tualized embeddings of the input sequence. We can change this encoder in function of the languages we
train on. For the experiments on English data, we keep the original BERT model [25] in the end-to-end ar-
chitecture. For the Dutch experiments, we replace BERT with RobBERT [39], a variant of BERT which has
been pre-trained on Dutch data. Additionally, we experiment with using XLMR [5] — a multilingual model - to
produce the contextualized embeddings, both for the Dutch and the English experiments.

Figure 3 shows how the Transformer encoder is used in the mention scoring step of the end-to-end architec-
ture. The subsequent coreference scoring step is unaffected by the introduction of the Transformer encoder
and is thus not shown.

The hyperparameters used in this experiment are largely the same as those proposed by the original archi-
tecture [35], as described in subsection 3.2. We scaled the feed-forward neural-network size (f fnn_size)
down to 1000 from 3000. This slightly decreases the end performance but achieves faster training. We in-
creased the max number of sentences the model can process per batch (maz_training_sentences) from 11
to 30. This allowed the model to better fit the Dutch data, since the Dutch data features on average more
sentences per document.
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Model Trained on Evaluated on MELA F1 (%)
Published results
Joshi et al. (2019a) [35] OntoNotes, train  OntoNotes, dev  73.9

Our results

BERT OntoNotes, train  OntoNotes, dev 72.91
RobBERT OntoNotes, train  OntoNotes, dev  63.02
XLMR OntoNotes, train  OntoNotes, dev  72.90

Table 1: English monolingual performance, comparing our best achieved results with the most comparable
results from literature. We achieve one percent worse performance compared to literature, due to our models
using a smaller feed-forward neural-network size. Interestingly, we found that XLMR (a multilingual model)
performs as good as BERT (an English monolingual model). Unsurprisingly, RobBERT (a Dutch monolingual
model), performs worst.

5.2 Experiment setup

First, we run experiments to study the monolingual coreference resolution performance of BERT, RobBERT,
and XLMR. To measure the English performance, we train and evaluate all three models on the OntoNotes
dataset. Measuring the Dutch performance is done by training and evaluating all three models on the SoNaR
dataset. Note that, in these experiments, we are also training and evaluating BERT (an English model) on the
Dutch dataset, and RobBERT (a Dutch model) on the English dataset. This gives us information about the
importance of the specific language of the Transformer used in the architecture.

Even though XLMR is a multilingual model (i.e., pre-trained on multiple languages) we are exclusively run-
ning monolingual experiments in this step (i.e., only fine-tuning on coreference resolution for one language).
Experimenting with XLMR in a monolingual setting allow us to build a fairer comparison with regard to the
second step of this work (see section 6): we will investigate the use of XLMR in a multilingual setting (i.e.,
fine-tuning the model on multiple languages) and discuss the benefit of migrating from a monolingual train-
ing setup to a multilingual one.

Finally, we investigate the zero-shot cross-lingual performance of these three modules. To measure the
English-to-Dutch transfer, we train each model on the English data and evaluate on the Dutch data. This
transfer is zero-shot, the model is never fine-tuned on Dutch data before evaluation. We do a similar ex-
periment to measure the Dutch-to-English transfer. These experiments are particularly interesting since a
good cross-lingual transfer might indicate the use of multilingual training, which we will further investigate
in section 6.

5.3 Results

In section 5.3.1 and section 5.3.2, the attained results for the monolingual English and Dutch experiments
respectively are interpreted. Section 5.3.3 describes the zero-shot cross-lingual results.

5.3.1 English performance

Table 1 shows the performance for the English monolingual experiments. Comparing the published results
of Joshi et al. [35] with our most comparable result (BERT), we see a drop in performance of 1%. This is due
to the lowered f fnn_size we use to train faster. As expected, the Dutch model RobBERT performs noticeably
worse (-10%) compared to BERT and XLMR. This is due to RobBERT not being pre-trained on English data,
indicating the importance of using a Transformer compatible with the downstream task. Interestingly, the
multilingual XLMR model achieves results on par with the BERT model on the monolingual task. This latter
result strengthens the claim made by [5]: XLMR is competitive with high-resource monolingual models such
as BERTS.

3XLMR is the first multilingual model where this is shown to be the case.
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Model Trained on Evaluated on MELA F1 (%)
Published results

Poot et al. (2020) [18] SoNaR, train  SoNaR, dev 71.53

Van Cranenburgh (2019) [46] SoNaR, train  SoNaR, dev 55.45

Our results

BERT SoNaR, train  SoNaR, dev 39.67
RobBERT SoNaR, train  SoNaR, dev 44.50

XLMR SoNaR, train  SoNaR, dev 49.63

Table 2: Dutch monolingual performance, including singletons for the SoNaR dataset. Our best result
severely lags behind the existing state-of-the-art, due to our model not being able to predict the singleton
entities present in the Dutch dataset. Interestingly, XLMR (a multilingual model) performed better compared

to RobBERT (a Dutch monolingual model).

Model Trained on Evaluated on MELA F1 (%)
Published results

Poot et al. (2020) [18] SoNaR, train  SoNaR, dev 52.76

Van Cranenburgh (2019) [46] SoNaR, train  SoNaR, dev 46.96

Our results

BERT SoNaR, train  SoNaR, dev 50.02
RobBERT SoNaR, train  SoNaR, dev 56.21

XLMR SoNaR, train  SoNaR, dev 62.20

Table 3: Dutch monolingual performance, excluding singletons for the SoNaR dataset. Our best result
achieves new state-of-the-art result on the SoNaR dataset when excluding singletons. Comparing the result
using RobBERT with the previous state-of-the-art, we notice an increase in performance due to our approach
being slightly different. Interestingly, the biggest gain in performance is due to using XLMR (a multilingual
model) compared to RobBERT (a Dutch monolingual model).

5.3.2 Dutch performance

In order to build a fair comparison between the Dutch and English performance, we need to consider the slight
task difference over both languages. As mentioned in section 2.2, singletons (i.e., entities mentioned only
once in a document) are not annotated in the OntoNotes dataset. They are, however, annotated in the SoNaR-
1 dataset. This poses a problem, since the neural architecture for coreference resolution was designed for
the OntoNotes dataset, and is thus incapable of outputting singletons. To achieve competitive results on the
SoNaR-1dataset, we should either adapt the original architecture to allow for singletons or remove singletons
from the SoNaR-1 dataset altogether. We chose the latter approach, since removing singletons from the
SoNaR-1 dataset allows us to use one single architecture on both languages, which will make our next step
(multilingual training) much easier. We give insights into the effect of removing singletons by also training
and evaluating on SoNaR-1 before removing the singletons.

We compare our results with those obtained by Poot et al. [18], a concurrent work also aimed at creating
a neural baseline for Dutch coreference resolution. Both our work and the work by Poot et al. is based on
the end-to-end coreference resolution architecture introduced by Lee et al. [33, 47] and further developed
by Joshi et al. [35]. Contrary to our approach, Poot et al. dealt with the singleton issue by allowing their
architecture to predict singletons. The authors also report on results where they exclude singletons from
their system output and evaluation data (however, they always train on data containing singletons). For the
rest, their approach is very similar to ours except for two details: (i) they used BERTje [38] as their Dutch
encoder while we use RobBERT and (ii) they freeze their encoder while fine-tuning the head architecture for
coreference resolution while we fine-tune the head architecture as well as the encoder. We also compare
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our results with those of Van Cranenburgh [46], a rule-based Dutch coreference resolution system based on
Stanford’s multi-pass sieve coreference resolution system [32]. This rule-based system held the state-of-the-
art result for Dutch coreference resolution prior to our work and the concurrent work of Poot et al.

Table 2 shows the obtained results when not excluding singletons from the SoNaR dataset. Notice the large
gap in performance between the best published result by Poot et al. (71.53% F1) and our best model (49.63%
F1). This gap can be largely contributed to our architecture not predicting singletons. As can be expected,
the BERT model applied to the Dutch data performs worst, again indicating the importance of matching the
Transformer to the downstream task. While the RobBERT model achieves a gain of about 5% with regard
to BERT, it is interesting to note that XLMR again achieves a 5% gain on RobBERT. The multilingual model
performed better than the Dutch model, suggesting that Conneau et al. [5] were right in stating that for
low-resource languages, multilingual models can outperform monolingual models.

Table 3 shows the results when singletons are excluded. Remember, in our models this means we are ex-
cluding singletons from the training and evaluation data. The models by Poot et al. and Van Cranenburgh
never exclude singletons from their training data, they exclude the singletons from their system output and
ground-truth data during evaluation. We immediately notice a large drop in performance (-18.77%) when com-
paring Poot et al.’s architecture on the dataset with and without singletons. This is due to singletons being
relatively easy to predict, and thus inflating the achieved accuracy. Looking at our results, we again see the
same ranking between the models: the English model performs worst and the multilingual model performs
best.

Comparing our best result on SoNaR without singletons, we notice a 9.44% performance gain over Poot et al.
Because our architectures are in essence very similar, this gap is most likely due to (i) our use of a multilingual
model - which consistently outperforms a monolingual Dutch model in all our experiments, (ii) the fact that
we update our Transformer during training, and (iii) Poot et al. having an adapted architecture that is able
to predict singletons — even though these predictions are removed from the system output upon evaluation.
From our experiments, we deduce that more than half of this gain (5.99%) is due to our use of a multilingual
model. The remaining 3.45% is due to the other reasons mentioned above.

5.3.3 Zero-shot cross-lingual performance

Other than the monolingual results described above, we are interested in studying the zero-shot cross-lingual
transfer of our model. In these experiments, we train a model on one language and evaluate it on the other,
without first fine-tuning it on the evaluation language (hence zero-shot). We have already learned that the
multilingual model outperforms the Dutch model in a monolingual setting, now we are interested in learning
whether the multilingual model can also aid cross-lingual transfer.

Table 4 shows the zero-shot cross-lingual results when including singletons for the Dutch dataset. The re-
sults when evaluating on the Dutch dataset are noticeably lower compared to evaluating on the English
dataset, due to the model not being able to output singletons.

As can be seen in table 4, a very strong cross-lingual transfer is achieved using the multilingual XLMR model.
XLMR has been pre-trained on many languages, including English and Dutch. We hypothesize this strong
transfer is due to XLMR producing similar output embeddings for parallel input sentences (i.e., a sentence
and its translation in another languages) [5]. Indeed, XLMR was pre-trained with a Translation Language
Modeling objective, which aims to achieve just that (see subsection 3.3). Thus, we can view fine-tuning
XLMR on coreference resolution for one language as essentially initializing the head architecture for the other
language: because the embeddings produces by XLMR over different language are similar, the initialized
head architecture is partially applicable to a language for which it has not been trained.

The cross-lingual results for XLMR are strong. However, there is still room for improvement: Dutch-to-English
transfer for XLMR is lagging behind 22,88% compared to training XLMR on English. Interestingly, English-to-
Dutch transfer falls only 11.57% short. This could be due to the OntoNotes dataset containing roughly 60%
more data than SoNaR, thus being a richer source to transfer from.

This remaining gap between the monolingual result and the cross-lingual transfer result described above
could be due to two reasons: (i) the embeddings produced by XLMR are not exactly similar for semantically
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Model Trained on Evaluated on MELA F1 (%)
Dutch-to-English transfer

BERT SoNaR, train OntoNotes, dev 22.53
RobBERT SoNaR, train OntoNotes, dev  19.72

XLMR SoNaR, train OntoNotes, dev  50.02
English-to-Dutch transfer

BERT OntoNotes, train  SoNaR, dev 7.89
RobBERT OntoNotes, train  SoNaR, dev 5.44

XLMR OntoNotes, train  SoNaR, dev 38.06

Table 4: Zero-shot cross-lingual transfer results, including singletons for SoNaR dataset. In both Dutch-to-
English and English-to-Dutch transfer, XLMR strongly outperforms the monolingual models.

Model Trained on Evaluated on MELA F1 (%)
Dutch-to-English transfer

BERT SoNaR, train OntoNotes, dev  18.48
RobBERT SoNaR, train OntoNotes, dev 12.00

XLMR SoNaR, train OntoNotes, dev  51.81
English-to-Dutch transfer

BERT OntoNotes, train  SoNaR, dev 9.88
RobBERT OntoNotes, train  SoNaR, dev 6.78

XLMR OntoNotes, train  SoNaR, dev 49.85

Table 5: Zero-shot cross-lingual transfer results, excluding singletons for SoNaR dataset. In both Dutch-to-
English and English-to-Dutch transfer, XLMR strongly outperforms the monolingual models.

close sentences over different input languages or (ii) there is a task difference over the input languages.
We know both of these reasons to be true to some extent: (i) the embeddings produced by XLMR are not
perfectly aligned [5] and (ii) SoNaR and OntoNotes differ in their exact annotation guidelines (see subsection
2.2).

5.4 Conclusions

With these experiments we have indicated the viability of applying a multilingual transformer like XLMR to a
low-resource language in a monolingual setting.

Our results show that the multilingual model performs consistently better compared to the Dutch mono-
lingual model for the task of coreference resolution: a 5.99% increase in performance was achieved. This
finding is particularly interesting for situations where a downstream dataset for a low-resource language
exists, but no pre-trained monolingual model is available.

Additionally, we find a much stronger zero-shot cross-lingual transfer when using a multilingual model for
coreference resolution.

These results indicate that using multilingual models for coreference resolution is a viable alternative to
using monolingual models — sometimes even outperforming them - and that multilingual models are able
to better transfer learned coreference resolution from a source language to a target language.

In the following experiment, we aim to exploit these findings to further push the performance achieved with
multilingual models.
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6 Multilingual training

In this step, we leverage the findings of our monolingual experiments to train a better multilingual corefer-
ence resolution system. Based on our core hypothesis, we aim to incorporate additional English coreference
resolution data during training to increase performance on the Dutch task. We investigate different ways
of creating a multilingual training dataset, the impact of singletons in multilingual training, and multilingual
warm-up training. Additionally, we study the convergence of the individual languages during multilingual
training.

In subsection 6.1 and 6.2, an overview of the models and data used is given. The experiment setup is de-
scribed in subsection 6.3. We discuss our results in subsection 6.4. Finally, subsection 6.5 gives an overview
of our findings and proposes a conclusion.

6.1 Models

We will exclusively consider XLMR in these experiments, as we have shown XLMR is able to attain the best
result achieved with BERT and surpasses the results achieved by RObBERT.

No changes concerning the architecture, hyperparameters or optimization procedure is made compared to
previous experiments.

6.2 Data

We are interested in learning the effect of jointly training XLMR on Dutch and English data. To this extent,
we need to merge the train splits of OntoNotes and SoNaR. It should be noted that, while SoNaR has fewer
documents and less total amount of tokens, SoNaR has more tokens per document on average.

Several merging techniques are investigated. First, we consider the full dataset: all documents of SoNaR
and OntoNotes are merged and shuffled, to produce one final dataset containing all the English and Dutch
data. Second, we explore a document-balanced dataset: only the first N English documents in the dataset are
kept, where N is the total number of Dutch documents. These resulting documents are merged and shuffled,
producing a dataset with equal amount of documents for both languages. Because the model essentially
treats one document as one batch, this results in an equal amount of Dutch and English batches during
training. Finally, a token-balanced dataset is created: the first K English documents are kept so that the sum
of all tokens in these K documents is approximately equal to the sum of all tokens in the Dutch dataset.
This produces a dataset containing an equal amount of Dutch and English tokens. Given that we are dealing
with low-resource languages, forming a token-balanced dataset will disregard a large portion of the available
high-resource languages. While the aim of this work is to leverage as much high-resource data is possible,
we are interested to see how the training procedure responds to different balances of data and therefore
consider this token-balanced dataset in our experiments.

Table 6 shows several statistics of these proposed datasets. We will only use the train-split of the merged
datasets, since we will evaluate our performance directly on OntoNotes or SoNaR. Briefly summarized, the
full dataset train-split contains almost 2M tokens. Of these tokens, 69% are from the English data. Only
12.7% of the 3,211 documents in the merged train-split belong to SoNaR, indicating that the model will see
roughly 6.9 times more English batches than Dutch batches. This batch imbalance could produce an issue
during training. Therefor, we construct a document-balanced dataset to tackle this problem. However, in
constructing this dataset, 85% of the original English documents need to be discarded. The train-split con-
tains only 800,495 tokens (less than half of the amount of tokens in the full dataset), of which 77% are Dutch.
While this dataset is balanced at the batch level, it introduces imbalance at the token level (since a Dutch
batch contains more data on avarage). Alternatively, we can create a token-balanced dataset. We obtain a
dataset containing 1,232,989 tokens in total over 2,019 documents, of which only 20.3% documents are Dutch
(which, as is the case for the full dataset, leads to a batch-imbalance). An advantage of the token-balanced
dataset is that we discard only 45% of the original English documents, compared to discarding 85% in the
document-balanced dataset.
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6.3 Experiment setup

We train XLMR on all three datasets proposed above. Each trained model is evaluated on both the SoNaR
and OntoNotes dataset. We perform these sets of experiments twice, including and excluding singletons in
the SoNaR dataset.

Additionally, we consider a multilingual warm-up technique: we first pre-train XLMR on English coreference
resolution before fine-tuning XLMR on Dutch coreference resolution without singletons. In this setting, the
model is sequentially trained on coreference resolution for multiple languages. This contrasts with the joint
multilingual experiments, where the model is trained on multiple languages at the same time.

6.4 Results

Section 6.4.1 summarizes the findings of the joint multilingual training experiment. The result of the warm-up
experiment is discussed in section 6.4.2.

6.4.1 Joint multilingual training

We train XLMR on the full, token-balanced, and document-balanced datasets and evaluate this jointly trained
model on OntoNotes and SoNaR. Table 7 shows the results of these experiments when the singletons in
SoNaR are included, table 10 describes the same experiment when the singletons are removed from the
SoNaR dataset. Immediately we notice that when evaluating on SoNaR, the different ways to merge the
dataset has little impact on the end result. This is not very suprising: since SoNaR is the minority dataset
both in terms of total amount of tokens and amount of documents, all three datasets contain the same
amount of Dutch data. When evaluating on OntoNotes, the choice of dataset does have an impact. The full
dataset achieves best results, followed by the token-balanced as second best and document-balanced as
worst. This is also not surprising: the ranking directly corresponds with the total amount of English data in
each dataset. We conclude that, even though the full dataset contains almost 7 times more English batches
compared to Dutch batches, it still gives the best overall performance because it holds the most data. Thus,
training the architecture is robust against a batch-imbalance®.

Figure 4 shows the evaluation accuracy during the joint training process per language on all three datasets.
We notice very little difference in convergence over the different datasets. Only the end result for the English
language is impacted. One small benefit of using a document-balanced dataset can be seen in subfigure (b):
the Dutch performance converges slightly faster.

Now we compare our best models from the monolingual experiments with our best jointly trained models.
Table 9 shows this comparison when singletons are included in the SoNaR dataset, table 10 shows the com-
parison when singletons are excluded. Interestingly, the jointly trained multilingual model performs best in
all cases. However, most increases due to jointly training are below 1%, making it hard for us to determine
their significance. The increase of +1.62% when jointly training without singletons and evaluating on SoNaR,
however, is notable. The Dutch coreference resolution performance is modestly increased when incorporat-
ing English training data, suggesting that some positive cross-lingual transfer is benefiting the low-resource
task (as our zero-cross cross-lingual result from section 5.3.3 suggested might happen). It should be noted
that we only see this positive transfer when singletons are removed from the SoNaR dataset. Again, this does
not surprise us: when removing the singletons from the Dutch task, the Dutch and English task descriptions
are more aligned - providing additional opportunity for positive transfer between both tasks.

Even though we only notice a significant increase in performance when jointly training without singletons, it
should be noted that in both cases the multilingual model was able to match the results previously obtained
by two distinct monolingual models. This itself is impressive.

One additional question that arises is how the performance on the individual languages converges during
multilingual training. It might be the case that both English and Dutch converge at a different rate during multi-
lingual training. Considering the batch-imbalance in the full dataset, Dutch might converge slower compared

4For the next step of this work — described in section 7 — this will not remain true. Therefore, we will end up revisiting the use of a
document-balanced dataset.
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Figure 4: MELA F1 validation score during training of XLMR on (a) OntoNotes and (b) SoNaR (including
singletons) for the full, token-balanced, and document-balanced datasets. The final performance for (a)
OntoNotes is dependent on the dataset used. The final performance of (b) SoNaR is invariant of the consid-
ered dataset.

Model Trained on Evaluated on MELA F1
Full dataset

XLMR OntoNotes, train + SoNaR, train OntoNotes, dev 73.57
XLMR OntoNotes, train + SoNaR, train SoNaR, dev 49.93

token-balanced dataset

XLMR  OntoNotes, train + SoNaR, train  OntoNotes, dev 68.95
XLMR  OntoNotes, train + SoNaR, train  SoNaR, dev 49.41
Document-balanced dataset

XLMR  OntoNotes, train + SoNaR, train  OntoNotes, dev 66.25
XLMR OntoNotes, train + SoNaR, train  SoNaR, dev 49.47

Table 7: Training XLMR on merged datasets, including singletons for the SoNaR dataset. The best English
and Dutch performance is achieved when training XLMR on the full dataset.

to English. Additionally, both languages could be fighting over the available model capacity: an increase in
performance on one language might correlate with a decrease on the other.

Figure 5 gives us an insight into this question, by showing the convergence of the evaluation accuracy for
both languages during the joint training process (considering the full dataset without singletons). Our worries
are put to rest: both languages converge in a similar manner (even when a high batch-imbalance is present)
and the curves do not suggest that both languages are fighting over model capacity.

6.4.2 Warm-up training

While the results described above indicate that jointly training coreference resolution can be a viable option to
further increase performance on low-resource languages, the techniques comes at a cost. Indeed, fine-tuning
a model on a merged dataset consisting of high-resource and low-resource data is more computationally
expensive compared to just fine-tuning on the low-resource data.

Therefore, instead of joint training, we investigate the scenario of warm-up training. Before the model is fine-
tuned on Dutch coreference resolution, we introduce an additional pre-training step where the model is first
pre-trained on English coreference resolution.
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Model Trained on

Evaluated on

MELA F1

Full dataset

XLMR OntoNotes, train + SoNaR, train
XLMR OntoNotes, train + SoNaR, train

OntoNotes, dev
SoNaR, dev

73.68
63.82

token-balanced dataset

XLMR  OntoNotes, train + SoNaR, train
XLMR  OntoNotes, train + SoNaR, train

OntoNotes, dev
SoNaR, dev

68.98
61.63

Document-balanced dataset

XLMR OntoNotes, train + SoNaR, train
XLMR  OntoNotes, train + SoNaR, train

OntoNotes, dev
SoNaR, dev

64.27
62.56

Table 8: Training XLMR on merged datasets, excluding singletons for the SoNaR dataset. The best English
and Dutch performance is achieved when training XLMR on the full dataset.

Model Trained on Evaluated on MELA F1
Dutch performance

XLMR  SoNaR, train SoNaR, dev 49.63

XLMR OntoNotes, train + SoNaR, train  SoNaR, dev 49.93 (+0.30)

English performance

XLMR OntoNotes, train
XLMR OntoNotes, train + SoNaR, train

OntoNotes, dev
OntoNotes, dev

72.90
73.57 (+0.67)

Table 9: Comparing monolingual training with multilingual training on the full dataset, including singletons
for the SoNaR dataset. Both for the Dutch and English performance, multilingual training performs marginally

better.

Model Trained on Evaluated on MELA F1
Dutch performance

XLMR  SoNaR, train SoNaR, dev 62.20

XLMR OntoNotes, train + SoNaR, train  SoNaR, dev 63.82 (+1.62)

English performance

XLMR OntoNotes, train
XLMR OntoNotes, train + SoNaR, train

OntoNotes, dev
OntoNotes, dev

72.90
73.68 (+0.78)

Table 10: Comparing monolingual training with multilingual training using the full dataset, excluding sin-
gletons for the SoNaR dataset. The English performance is marginally increased by the multilingual training.
The Dutch performance is significantly increased by the multilingual training.
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Validation MELA F1 score (XLMR, full dataset, no singletons)
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Figure 5: Convergence of the English (OntoNotes) and Dutch (SoNaR) validation MELA F1 score during
training of XLMR on the full dataset without singletons. Although the final performance on the Dutch and
English dataset differs, both curves show a similar convergence.

Figure 6 shows that this technique is able to achieve similar results for the low-resource language compared
to jointly training. Warm-up training has two advantages compared to joint training: (i) the generic warm-up
step can effectively be reused for different downstream low-resource languages and (ii) the fine-tuning step
converges faster because the model is already partially initialized. Regardless of these benéefits, we will only
consider joint multilingual training in the next step of our work.

6.5 Conclusion

With these experiments we indicated the power of joint multilingual training. We were able to construct one
model that achieves results on par with state-of-the-art performance for two languages at once.

Interestingly, when the tasks across the languages are harmonized by excluding singletons from the Dutch
data, the joint training procedure was able to surpass the best monolingual performance. We hypothesize
this is due to more aligned tasks providing more opportunities for positive cross-lingual transfer. A gain of
1.62% was achieved by training XLMR on both English and Dutch data, resulting in a total gain of 7.61% of
using XLMR compared to the Dutch baseline.

Additionally, we provided insights into how to merge high-resource and low-resource datasets, how the jointly
trained model converges, and we explore warm-up training as a more efficient alternative compared to joint
training.

In the following experiment, we hope to leverage our newfound understanding of joint multilingual training
to design systems that respond even better to joint training.
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Validation MELA F1 score (XLMR, warmup training, no singletons)
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Figure 6: Convergence of the English (OntoNotes) and Dutch (SoNaR) validation MELA F1 score during
warmup training, excluding singletons for the SoNaR dataset. XLMR is first trained on English data exclu-
sively. Finally, XLMR is fine-tuned on Dutch data. While this warmup setting achieves similar performance
for the Dutch language, the resulting English performance is lower.

7 Domain Adversarial Neural Networks for joint multilingual training

This experiment focuses on extending the joint training approach, developed in section 6, to allow a multi-
lingual model to better benefit from joint training for the task of coreference resolution. We explore adding
a Domain Adversarial Neural Network to our model (see section 4), which provides us with an additional
training objective. This training objective aims to align the embeddings outputted by the Transformer across
different languages, resulting in better positive cross-lingual transfer for the downstream task.

In subsection 7.1, we provide a detailed explanation into how we extended our existing model with a domain
adversarial neural network. The experiment setup is given in subsection 7.2 and the findings are discussed
in subsection 7.3. Finally, a conclusion is formed.

7.1 Models

Figure 7 shows an overview of the proposed architecture. We added a domain adversarial neural network
to our architecture, further referred to as the domain classifier. Given an embedding, the domain classifier
tries to predict whether this embedding originated from an English or a Dutch sentence. This information will
be used to remove the discrepancy between English and Dutch embeddings, as to push the model towards
language-independent features.

We describe the additional loss function the domain classifier introduces, what optimization objective is
used, and how this is implemented.

Loss functions: Given an input sentence, the Transformer encoder outputs the sequence (z;)i=¥, where z;
is the produced embedding for the i** input token and NN is equal to the total amount of input tokens. Using
this output sequence, the domain classifier makes a language prediction y; per embedding as follows:

yi = ffon(zi;0) (7)

where 6 represents the parameters of the domain classifier. Given the sequence of language predictions
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(y:)i=, the loss produced by these predictions is calculated as follows:

i=N
LoSSgomain = Z BCE(sigmoid(y;), d) (8)
i=1

where d represents the domain of the input sequence, BCE represents the binary cross-entropy loss and
sigmoid represents the sigmoid function.

Lossgomain iS calculated by making a language prediction on each embedding z; of the Transformer output
sequence. Alternatively, we can calculate a slightly different loss = Lossqomain,pooted — based on only one
prediction per input sequence. For sentence-level classification tasks, typically only the first produced em-
bedding zq is considered. This embedding is passed through a pooling layer, forming the pooled output p.
This pooling layer has been pre-trained with the rest of the Transformer to form good sentence-level em-
beddings. It should be noted that p and z; have the same dimensions. Lossgomain—pootea iS Calculated as
follows:

y = ffnn(p;0) )
LOSSdomain—pooled = BCE(SngOZd(y)7 d) (1 0)

Whether or not we actually use Lossgomain OF L0SSdomain—pooled IS irrelevant for the remainder of this section.

The loss produced by the coreference head, Losscore ference IS N0t affected by the introduction of the domain
classifier and is therefore calculated as described in subsection 3.2.

Optimization objectives: Our goal is to promote the emergence of task-discriminative features that are
language-independent. We can achieve this by solving the following optimization problem:

0 = argming Lossdaomain (0, ®) (M)
¢ = argming Losscoreference(0¥) — LOSSdomain (0, ) (12)
1& = a?’gminw Losscoreference (¢a dj) (13)

Indeed, the equations above give rise to a setting where the domain classifier (§) minimizes Lossqomain
and the coreference head (y)) minimizes Losscoreference- INterestingly, the Transformer encoder (¢) aims to
minimize Losscore ference While maximizing Lossgomain- Therefore, the transformer encoder is pushed to find
a trade-off between task-discriminative features (IoW Losscoreference) @nd language-independent features
(hlgh LOSSdomuin)-

This contrasting optimization goal between the Transformer encoder and the domain classifier produces an
adversarial setting: when the domain classifier learns to discriminate between tokens of both languages, the
Transformer encoder is pushed to manipulate its output such that the domain classifier is no longer able to
properly discriminate between the tokens.

Implementation: While the optimization objectives above are in essence very simple, they are not straight-
forward to achieve with standard optimizers often used for deep learning.

Luckily, we can frame the optimization objectives in a more typical setting, allowing us to use conventional
optimizers to achieve our goal of task-discriminative language-independent features.

We use a Gradient Reversal Layer (GRL) to connect the output of the Transformer encoder with the input of
the domain classifier. The GRL acts as an identity operation during the forward pass, whereas it reverses
and scales the gradients with a scalar A during the backward pass. We can describe this behaviour using the
pseudo-function GRL,(z) [44]. The forward and backward behaviour is summarized by:

GRL)(z) =x (14)
0GRIL _ (15)
oz

where | is the identity matrix.
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Now consider the backward pass of the model. The optimizer aims to optimize ¢ (the Transformer param-
eters), 0 (the domain classifier parameters), and + (the coreference head parameters) with regard to the
loss

LOSS(G, (ba ¢) = Losscoreference(¢a ¢) + aLOSSdomain(ea ¢) (1 6)

The hyperparameter « is used to scale Lossgomain, allowing us to specify how much emphasis we want the
optimization procedure to place on the domain classification task.

The new optimization objective becomes:
0,0, = argming ; ;, Loss(0,¢,v) (17)

We can directly optimize this objective via the use of a popular optimizer such as SGD or Adam.

To verify that the new objective function together with the GRL is equivalent to the previous objective func-
tions, we will consider the produced gradients.

Optimizing the coreference head with regard to Loss(6, ¢, v) is trivial. Since Lossqomain (8, @) is independent
of 1, the gradients reduce to:
aLOSS(ev d)a 1/’) _ aLosscoreference(d)v 1/))

90 a0 (18)
A similar situation arises when optimizing the domain classifier:
OLoss(0, ¢, 1) _ aaLossdomain(ov(b) (19)

00 00

When optimizing for the Transformer, we notice the impact of the GRL. The gradients used to optimize the
domain classifier are scaled with —\ when they are backpropagated from the domain classifier into the
Transformer (remember the backward behavior of the GRL, described in equation 15). This results in an
update using gradients:

3L085(9, o, 1/)) _ 8L055(:oreference(¢» IZJ) “a O0L05S4omain (9, ¢)

99 96 96 20)

As we can see from equations 19 and 20, the domain classifier is optimized to minimize Lossgomain (0, ¢)
while the Transformer aims to maximize Lossiomain (6, @). This gives rise to the adversarial setting as de-
scribed by the previous objective functions.

Notice the addition of o and ), two new parameters. A scenario where « or X is equal to zero leads to the
same situation with regard to ¢: the Transformer network is not optimized for Lossgomain (0, ¢). However,
these scenarios give rise to a different situation with regard to 6, the domain classifier. When « is equal to
zero and X is not, the domain classifier is not updated. Conversely, when ) is equal to zero and « is not, the
domain classifier is updated.

The domain classifier is implemented using one hidden layer consisting of 512 neurons.

7.2 Experiment setup

Before discussing our experiments and results, we take a moment to first illustrate the results we want to
achieve.

Training adversarial networks introduces some new difficulties. Sometimes, adversarial networks suffer
from collapse. During a collapse, the equilibrium between both competing networks is broken, resulting in
worsened performance.

Consider, for example, a possible collapse scenario for the domain classifier. If the domain classifier predicts
allinput tokens to be English, whether they originate from a Dutch or English sentence, the following situation
arises. The BCE loss calculated on English input sentences will be very small, since all predictions will be

29



Language

prediction Po
Coreferent
probability [PO pP1 p2 ... plx’—l]
distribution Sigmoid
N N A I R A i
Domain
classifier
Coreference head xiT
GRL
Contextualized Zo T T X
embeddings
XLMR

e © 00 0 0 0 0 0 O

Figure 7: Proposed architecture with Gradient Reversal Layer. Given the token embeddings, XLMR produces
a sequence of contextualized embeddings. These contextualized embeddings are used by the coreference
head to predict the coreference clusters, as described in subsection 3.2. Additionally, the contextualized
embeddings are processed in parallel by a Gradient Reversal Layer (GRL) and a Domain classifier, to produce
a language prediction.

correct. The BCE loss for the Dutch input sentences will be very large. This leads to a situation where
the English embeddings of the Transformer rarely get updated while the Dutch embeddings get updated a
lot. Instead of better aligning the Dutch and English embeddings, the Transformer is holding the English
embeddings fixed and trying to map the Dutch on the English embeddings. A scenario like this can result in
badly aligned embeddings. Additionally, when the domain classifier is able to perfectly discriminate between
source and target domain, domain adversarial training suffers from vanishing gradients [48].

In the ideal scenario, the adversarial setting should causes the domain classifier to mislabel an input em-
bedding sometimes, but not always. This indicates that the domain classifier is struggling to consistently
predict the language of its input tokens but is not collapsing.

In our first experiments, we focus on how to avoid this adversarial collapse. We investigate whether it is more
favorable to apply the domain classifier to the pooled output or the sequence outputs of the Transformer,
as described in the previous subsection. The impact of a document-balanced dataset is re-evaluated in the
context of the domain classifier. Going one step further, we show how averaging the cross-entropy loss
produced by the language predictions (instead of summing) helps combat adversarial collapse.

Having gained a better understanding of adversarial collapse, we further focus on gaining fine-grained con-
trol of the adversarial training procedure. We investigate how tuning the o and )\ parameters can result in
better convergence. Finally, we show the impact of the relative difference between the learning rate of the
Transformer and the learning rate of the domain classifier.

7.3 Results

Subsections 7.3.1,7.3.2, and 7.3.3 focus on mitigating the adversarial collapse and respectively investigate:
adding the domain classifier to the pooled output or the sequence outputs, balancing the training data, and
balancing the training signal.

Subsections 7.3.4 and 7.3.5 discuss how to gain fine-grained control over the adversarial training and respec-
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Figure 8: Domain and coreference loss during training when (a) adding the domain classifier to the pooled
outputs and (b) adding the domain classifier to the sequence outputs. No Gradient Reversal Layer is used for
this experiment. Subfigure (b) indicates that predicting the languages per sequence output is a more difficult
task.

tively describe the impact of tuning the new hyperparameters and how differences in learning rates can steer
the adversarial training.

7.3.1 Pooled output vs token outputs

As described above, we can either apply the domain classifier to each embedding in the sequence output of
the transformer in parallel or once to a pooled representation of the sequence outputs.

We experiment with both settings and find that applying the domain classifier to each output embedding
and summing the individual losses provides better results. Figure 8 shows the evolution of Losscore ference
and Lossgomain during training when applying the domain classifier to (a) the pooled output and (b) the se-
quence outputs. In this experiment, we did not include a GRL layer, the entire model is tasked with minimizing
Lossgomain- This allows us to study the difference between using sequence outputs and pooled outputs with-
out the added complexity of a gradient reversal layer. We notice that the loss of the domain classifier quickly
approaches zero when applied to the pooled output, while this does not happen when the domain classfi-
fier is applied to the sequence outputs. This is not surprising: given a good representation of a sentence,
it is relatively easy to distinguish between input languages. However, this problem becomes harder when
considered at the token-level: some tokens are similar or even shared across languages, making a confident
prediction much more difficult for the domain classifier. We prefer this more difficult task: the easy task
gets solved by the domain classifier before the transformer can align the pooled outputs, thus resulting in a
collapse of the adversarial system.

Therefore, we will use Lossgomain @s described in equation 8 for the next experiments.

Figure 9 shows the language predictions made for the Dutch and English tokens seen during training. Even
though applying the domain classifier to the sequence outputs provides a better training loss, we still suffer
from adversarial collapse. The domain classifier defaults to predicting all tokens to be of English origin. This
collapse already happens during the first few training steps of the model.

7.3.2 Balancing the training data

As a next method to combat adversarial collapse, we investigate balancing the training data. We already
investigated balancing the training data in the case of joint multilingual learning (section 6). We found that,
when using the fully merged dataset — containing roughly 7 times more English batches than Dutch batches,
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Dutch token classification during training English token classification during training
(XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, full dataset) (XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, full Cdataset)
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Figure 9: Domain classifier output when training on unbalanced data for (a) Dutch tokens and (b) English
tokens. The domain classifierimmediately suffers from collapse: all tokens are predicted as being of English
origin.

Dutch token classification during training English token classification during training
(XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, document-balanced dataset) (XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, document-balanced dataset)
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Figure 10: Domain classifier output when training on balanced data for (a) Dutch tokens and (b) English
tokens. The domain classifier is suffering from collapse: at a given point in the training procedure, the domain
classifier only assigns one label to all tokens. Between 10,000 and 20,000 steps, the domain classifier was
able to overcome this collapse for a brief moment but ended up in an inverted collapse.

the Transformer was robust against this training imbalance. However, the same might not hold for the do-
main classifier.

We consider training the new model again with the document-balanced dataset. Now the domain classi-
fier is updated an equal amount of times for Dutch sentences and English sentences. Figure 9 shows the
predictions made by the domain classifier for the (a) Dutch tokens and (b) English tokens during training
on unbalanced data. Figure 10 shows the same metrics when training on balanced data. Both experiments
result in a quasi immediate adversarial collapse. The model is always predicting one language, regardless of
the actual input. To confirm this was not due to an unfortunate initialization of the domain classifier, we ran
several experiments with different random initialization, all giving rise to adversarial collapse. Interestingly,
we notice the situation for the balanced dataset is marginally better: the model at one point manages to
break the adversarial collapse, only to end up in an inversed collapse. While these results are slightly better,
we are not yet in the ideal regime described above.
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Dutch token classification during training English token classification during training
(XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, document-balanced) (XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, document-balanced)
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Figure 11: Domain classifier output when training on balanced data and balancing the training signal per
batch for (a) Dutch tokens and (b) English tokens. The domain classifier does not collapse, during the entire
training process the domain classifier is struggling to consistently predict the origin of a token. After 25,000
steps of the training procedure, an equilibrium is reached where the domain classifier manages to correctly
predict the majority of the language labels.

7.3.3 Balancing the training signal

We further investigate how to achieve a stable, non-collapsing adversarial training setup. Previously, we
described how balancing the training data — such that the model sees an equal amount of Dutch and English
batches — gives slightly better results. When further investigating possible causes for this collapse, we notice
that the loss produces by each batch is not equal in magnitude.

As described in equation 8, we apply the domain classifier in parallel to all the sequence outputs and sum the
resulting losses. However, not all sequences are equally long, causing this sum to vary in size. Additionally,
the mean sequence length per batch is much larger for the Dutch corpus, resulting in a loss produced by the
Dutch batches that is consistently larger compared to that of the English batches.

We solve this issue by averaging the individual losses produced by the domain classifier on the sequence
embeddings, instead of summing them:

i=N
LOSSdo’rnain—uveruged Z BCE SngOZd(yl) d) (21)

=1

This results in a loss per batch which is invariant with regard to the sequence length per batch. The order of
magnitude of the loss is now consistent over the English and Dutch batches.

Figure 11 shows the language predictions made when training the domain classifier with Lossqomain—averaged-
Note that we are also training on the document-balanced dataset: the amount of batches is balanced and
each batch now produces a loss of similar magnitude. We can see that adversarial collapse is avoided.
Interestingly, the adversarial training reaches a balance in the second half of the training procedure, with a
consistent number of tokens misclassified each step.

Alternatively, instead of balancing the amount of batches across the language and averaging the loss per
batch, we could also use the full dataset and multiply the loss for the minority batches with a ratio to achieve
an overall balanced training signal. This would allow us to use more English data, since we now omitted
several English documents to form a document-balanced dataset. We tried this, but were unable to produce
a setting that did not result in adversarial collapse®.

5This is most likely due to a quirk of the optimization procedure used. Before each update to the model parameters, the gradients
get clipped if their global norm exceeds a certain threshold, as described in [49]. Assume the majority class has k times more batches
compared to the minority class. Scaling the loss produced by the minority batches with a factor £ does not necessarily balance the
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Based on these insights, we only consider applying the domain classifier to the sequence embeddings, av-
eraging the loss of the domain classifier per batch, and training on a document-balanced dataset in the
following experiments.

7.3.4 Scheduling o and \

In the above sections, we described how we were able to achieve non-collapsing adversarial training. In
the subsequent sections, we shift our focus towards gaining more fine-grained control over the adversarial
training procedure.

Validation MELA F1 score
(XLMR, L=1.0, Alpha=0.1, language_Ir=1e-5, document-balanced)
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06 English dataset (OntoNotes)
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Figure 12: MELA F1 validation score when training XLMR on the document-balanced dataset and balancing
the domain classifier training signal per batch. The training procedure suffers from bad convergence during
the first 20,000 steps.

From the evaluation curves of the first result without collapse (figure 12), we notice a worse convergence for
the task of coreference resolution compared to not including a domain classifier. This results in a lower final
performance compared to our best multilingual model. This is not surprising, since the model is now being
optimized for an additional task. Our first goal in fine-tuning the adversarial training procedure will focus on
improving this convergence.

We consider scheduling both the « and X parameters to achieve better convergence. Remember subsection
7.1: o determines how much weight in general is placed upon the domain classification task (by scaling the

overall training procedure. Assume the loss on each batch, before scaling, has value n. Additionally, assume one minority batch and &
majority batches have been seen by the model. The model gets updated once in favor of the minority batch, with a scaled loss of & - n.
The model gets updated & times in favor of the majority batches, with a loss of n per update. If the norm of the gradients produces by
a loss of value k - n exceed the clipping threshold, but the norm of the gradients produces by a loss of value n does not, scaling the
minority loss with a factor & will not result in an overall balanced training signal. While this explanation is highly simplified and does
not cover all possible scenarios, it serves to highlight the difficulties with balancing the training loss when the underlying amount of
batches are not balanced.
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(a) MELA F1 validation score
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Figure 13: Scheduling lambda during training. Subfigure (a) shows the validation MELA F1 score during
training, subfigures (b) and (c) show the language predictions made by the domain classifier for Dutch and
English tokens respectively. Scheduling lambda did not improve convergence.

domain classification loss, see equation 16) and A determines how much the Transformer gets updated with
regard to the domain classification task (by scaling the gradients backpropagated from the domain classifier
into the Transformer, see equation 20). Because low values of these parameters reduce the effect of the
classification task on the Transformer, they will allow the Transformer to focus more on the coreference
task, thus improving the convergence. Once the Transformer has (partially) converged, we can increase the
value of « or A to gradually place more weight on the domain classification task.

Figure 13 shows the results obtained when « is fixed at 1 and ) is scheduled. Similarly, figure 14 was obtained
by fixing X to 1 and scheduling «. In both experiments the variables are scheduled in the same manner: the
variable is initialized at 0 and is linearly increased to 1 over 45,000 steps, after which it remains 1 for the rest
of the experiment. Counterintuitively, neither experiments led to better convergence.

Before running additional experiments, we explain why we think scheduling « is more favorable compared
to scheduling X\. When investigating figure 13 and figure 14, we notice no real difference between scheduling
a and A. When gradually increasing «, we are gradually placing more emphasis on the domain classification
task. When gradually increasing ), we are always optimizing the domain classifier and only gradually placing
more emphasis on aligning the embeddings in the Transformer. Take the extreme situation where we hold A
to be 0 for an amount of initial steps before discontinuously increasing A to 1. During the time that A was 0, the
domain classifier will have learned how to distinguish between the languages (since the Transformer is not
yet introducing confusion). When X gets increased to 1, the Transformer will first focus on manipulating the
features most used by the domain classifier, since this is the optimal way for the Transformer to maximize
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Figure 14: Scheduling alpha during training. Subfigure (a) shows the validation MELA F1 score during train-
ing, subfigures (b) and (c) show the language predictions made by the domain classifier for Dutch and English
tokens respectively. Scheduling alpha did not improve convergence.

Lossgomain. Once these features are manipulated, the domain classifier needs to find new discriminative
features and the Transformer is focused at removing these features. Thus, after the Transformer has quickly
removed the features the domain classifier learned to focus on when X\ was equal to zero, we arrive in the
exact same setting compared to when we schedule «. Therefore, we argue that scheduling both o and ) is
redundant and further only focus on studying the effect of « on the adversarial training.

In a subsequent experiment (shown in figure 15), we schedule o more aggressively: the variable is fixed at
0 for the first 20,000 steps, before being linearly increased to 1 over the next 25,000 steps, after which the
value remains at 1. This experiment is shown in figure 15. This new approach succeeds in improving the
model convergence.

7.3.5 Investigating the impact of the domain classifier learning rate

In our previous experiments, adversarial training resulted in a balance. The learning rates of the Transformer
and domain classifier can be used to control the characteristics of this balance. Indeed, if the learning rate of
the domain classifier is much higher, it should be able to continuously outsmart the Transformer — by finding
newer and more complex methods to distinguish the languages of the embeddings before the Transformer
is able to further align them. A similar situation arises when the domain classifier has a lower learning rate,
shifting the balance of the adversarial training in favor of the Transformer.
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Figure 15: Scheduling alpha (2nd attempt) during training. Subfigure (a) shows the validation MELA F1
score during training, subfigures (b) and (c) show the language predictions made by the domain classifier
for Dutch and English tokens respectively. Scheduling alpha for the second time did improve the convergence
of the model. The final validation performance did not improve however. We can clearly see the impact of
scheduling alpha when looking at the domain classifier output.

We consider three experiments with three different initial learning rates® for the domain classifier: 1e—6,
le—5, and 2e—4. These learning rates are respectively: 10 times smaller than that of the Transformer, equal
to that of the Transformer, and 20 timers higher than that of the Transformer (which is equal to the learning
rate of the coreference head architecture). In these experiments, we fix o at 0.1and A at 1. We do not consider
scheduling « during these experiments, such that we can directly study the effect of the different learning
rates.

Figure 16 shows the result of these three experiments. We are successful in shifting around the balance of
the adversarial learning by varying the learning rates of the domain classifier. For the smallest learning rate,
the domain classifier is the most confused. For the highest learning rate, the domain classifier is able to
make accurate predictions.

We propose running subsequent experiments with a learning rate for the domain classifier equal to 2e—4, our
highest learning rate from the previous experiment. The reasoning is as follows. The gradient reversal layer
pushes the Transformer to remove the features that are most useful for the domain classifier to predict the
language. If the domain classifier is lagging behind the Transformer in terms of learning rate, we cannot be
sure that the features on which the domain classifier focuses are actually the best features for the language

6The learning rates are exponentially decayed during training, as is custom when fine-tuning the model.
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Figure 16: Comparing the domain classifier outputs for different learning rates. In the left column the Dutch
predictions are shown, the right column shows the English predictions. The rows correspond respectively to
a learning rate of the domain classifier equal to 1e—6, 1e—5, and 2e—4. Once the domain classifier reaches an
equilibrium position, the learning rate determines the fraction of wrongly classified tokens. Higher learning
rates lead to fewer wrong predictions.

38



discrimination task. If the domain classifier has a higher learning rate and is winning with regard to the
Transformer, we are sure that the training signal produced by the adversarial setup is helping to remove
features from the Transformer output which are language-dependent, pushing the Transformer to output
language-independent token embeddings. A much higher learning rate than 2e—4 is not favorable, since this
might lead to adversarial collapse.

Figure 17 shows the evaluation accuracy of our best performing experiment. In this experiment we ap-
plied the domain classifier to the sequence outputs, using a document-balanced dataset, and optimized for
LosSdomain—averaged, @S described in subsections 7.3.1,7.3.2, and 7.3.3 respectively. A learning rate equal to
2e—4 is used for the domain classifier. With this learning rate, the model converges nicely without scheduling
the « or A variables: we take ) to be 1 and « to be 0.1 during the entire training procedure.

Validation MELA F1 score
(XLMR, L=1.0, Alpha=0.1, language_Ir=2e-4, document-balanced dataset)
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Figure 17: Validation MELA F1 score when training XLMR on the balanced dataset and balancing the training
signal per batch. No alpha or lambda scheduling is used. The domain classifier has a learning rate equal
to 2e—4. The model converges nicely and performs best of all models which use the adversarial domain
classifier.

7.4 Conclusion

In this section we explored the use of domain adversarial neural networks to further increase the benefit of
joint multilingual training for coreference resolution.

We showed how adversarial collapse can be avoided by balancing the training signal for the domain classifier.
Additionally, we showed fine-grained control over the training procedure by manipulating the new a and A
hyperparameters, as well as the learning rate of the domain classifier.

Table 11 shows a comparison between the best result using a domain classifier and the best multilingual
results, achieved in section 6. The addition of the domain classifier was unable to achieve a performance
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Model Trained on Evaluated on MELA F1
Best multilingual performance, full-dataset

XLMR OntoNotes, train + SoNaR, train  OntoNotes, dev 73.68
XLMR OntoNotes, train + SoNaR, train  SoNaR, dev 63.82
Best multilingual performance, document-balanced dataset

XLMR OntoNotes, train + SoNaR, train  OntoNotes, dev  64.27
XLMR OntoNotes, train + SoNaR, train  SoNaR, dev 62.56

Best domain adaptation performance, document-balanced dataset
XLMR + domain classifier OntoNotes, train + SoNaR, train  OntoNotes, dev 64.36
XLMR + domain classifier OntoNotes, train + SoNaR, train  SoNaR, dev 62.43

Table 11: Comparing best multilingual results with and without domain adaptation. Comparing the best
multilingual result with and without domain adaptation on the document-balanced dataset, we conclude
that the domain adaptation technique has no added value. Therefore, the best technique thus far consists
of multilingual training on the full dataset.

gain over the previously attained results. Additionally, since the domain adaptation technique requires a
document-balanced dataset without producing any gain in performance, the resulting model performs sig-
nificantly worse compared to multilingual training on the full dataset.

Initially, we explored the use of domain adaptation for multilingual coreference resolution under the assump-
tion that minimizing the discrepancy between the embeddings of different languages will allow for more
performance gain when jointly training on multiple languages. However, the domain adaptation technique
did not succeed in increasing the performance. One possible explanation is that the XLMR outputs over
different languages already have minimal discrepancy. Indeed, XLMR is pre-trained using a Translation Lan-
guage Modeling (TLM) objective, specifically aimed at minimizing the discrepancy between parallel inputs
(see section 3.3). This explains the strong zero-shot cross-lingual transfer observed. The additional signal
produced by the adversarial setting, aimed at further minimizing the language discrepancy, could be negligi-
ble. If XLMR’s TLM objective already reaches a very good alignment over languages, the domain adversarial
technigue will not have any additional effect. More research is needed to confirm this.
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8 Conclusions

In this work we designed and analyzed a domain adaptation system for joint multilingual coreference reso-
lution.

We started by building a neural baseline using a monolingual Dutch Transformer for the task of Dutch coref-
erence resolution. We found that a multilingual Transformer trained on Dutch coreference resolution con-
sistently outperformed the baseline, achieving an increase of 5.99% on the MELA F1 score. Additionally,
the multilingual Transformer showed a large increase in zero-shot cross-lingual performance between both
languages for the task of coreference resolution.

Building upon these promising results, we designed a multilingual learning approach that achieves a further
increasing in performance on Dutch coreference resolution by incorporating English data during training.
Multilingual learning achieved an additional 1.62% increase compared to our previous best result. This results
in a total increase of 7.61% compared to the original Dutch baseline.

We further study the applicability of a domain adversarial neural network to further aid the joint multilingual
training. We give insights into how to avoid adversarial collapse and demonstrate fine-tuned control over
the adversarial training procedure. Unfortunately, the addition of the domain adversarial neural network was
unable to further increase the performance for Dutch coreference resolution.

41



9 Future work

Since research is rarely ever finished, we highlight several options for future work. Our ideas are divided in
two subsections. Subsection 9.1 addresses possible direct next steps to further develop the technique of
domain adaptation for joint multilingual coreference resolution. In subsection 9.2, we discuss more indirect
options for further work concerning multilingual models and low-resource languages.

9.1 Direct future work
9.1.1 Include additional languages for multilingual training

A first step to achieve better performance with relative ease would be to include additional coreference res-
olution datasets over different languages, both high- and low-resource. Hopefully, the multilingual model is
able to leverage this increased amount of data over multiple languages to achieve a better transfer to low-
resource languages. Additionally, this increased richness in data might make the model more robust against
differences in the annotation schemes used for coreference resolution.

To build a proof of concept for this approach, we could vary the amount of English data used in our multi-
lingual experiments. This would help us estimate how much the performance is impacted by the amount of
high-resource data and if there is reason to believe multilingual training will benefit from more source data.

To achieve this, a study needs to be conducted to group (most of) all available coreference resolution datasets.
Additionally, it is important to fully understand the differences between these datasets with regard to the task
definition and annotation scheme employed. With a high probability, some harmonization effort will need to
be conducted over the different languages to allow a single architecture to train on all these datasets. Based
on the insights of this study, the option exists to annotate additional coreference resolution datasets, focus-
ing on languages or language groups where the study found resources to be most lacking.

9.1.2 Unsupervised domain adaptation

Thus far we have only considered supervised domain adaptation. When using a domain adaptation setup
to jointly train English and Dutch coreference resolution, we used annotated coreference resolution data for
both languages.

However, annotated coreference resolution data might not always be available for a low-resource language.
Therefore, we could consider an unsupervised domain adaptation setup. In this setting, the coreference head
is only optimized for the high-resource language. Unsupervised samples from the low-resource language are
used by the domain adaptation network to minimize the discrepancy between the Transformer output for the
high- and low-resource languages.

In subsection 5.3.3 we described the impressive zero-shot cross-lingual transfer capability of XLMR. Un-
supervised domain adaptation would be the natural extension of this finding: instead of solely training on
labeled high-resource data we can now train on a mix of labeled high-resource and unlabeled low-resource
data.

This would be especially interesting when considering a low-resource language on which XLMR is not pre-
trained. Indeed, the strong English-to-Dutch transfer observed is due to XLMR being pre-trained on both these
languages and already outputting similar representations for these languages. This might not be the case
for low-resource languages on which XLMR has not been pre-trained. Thus, the added effect of the domain
adaptation system, which helps XLMR align its outputs over languages, could be relatively greater in this
setting.

We did some initial exploration concerning unsupervised domain adaptation. However, our initial experi-
ments were suffering from adversarial collapse. Due to time constraints, we were not able to run subsequent
experiments aimed at combatting this collapse for unsupervised domain adaptation.
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9.1.3 Additional tuning

While we did not manage to gain better performance using a domain adversarial neural network, this could
in part be due to a worsened model convergence. For example, we could explore the effect of training our
proposed architecture longer with slower learning rate schedulers. However, tuning a model this big becomes
really expensive and time consuming. The cost effectiveness of tuning our model is much lower compared
to, for example, the cost effectiveness of incorporating other languages with readily available annotated data
into the training procedure.

9.2 Indirect future work
9.2.1 Multilingual SpanBERT

As mentioned in section 3.2, the state-of-the-art English architectures for coreference resolution use Span-
BERT as Transformer encoder. To achieve good coreference resolution results, it is vital to have access to
good span representations. SpanBERT is specifically pre-trained to produce high-quality span embeddings,
which translates into state-of-the-art coreference resolution performance.

Replicating SpanBERT's success on low-resource languages is difficult. Pre-training a model like SpanBERT
for a low-resource language is quite expensive and does not scale, considering the amount of low-resource
languages.

Having shown that XLMR is able to achieve competitive results for a high- and low-resource language, it
can be cost-effective to train a version of XLMR with span embeddings in mind. This model — SpanXLMR -
can be pre-trained via a combination of the Span Boundary Objective introduced by [37] and the Translation
Language Model Objective introduces by [5]. SpanXLMR could then be used to increase the state-of-the-
art for coreference resolution on many low-resource languages, using the multilingual learning approach
described in this work.

9.2.2 Cross-lingual model distillation

As an alternative to training a SpanXLMR-like model, cross-lingual model distillation might prove useful.
Hinton et al. introduced knowledge distillation [50] to compress the knowledge learned by a larger model (or
an ensemble of models) during training in a smaller model, which leads to more efficient inference. This is
achieved by jointly training the smaller model on two objectives.

Consider a model trained for a classification task. The first objective of the smaller model is to optimize the
cross-entropy loss of its predictions on the training dataset — the standard objective function used to train
classifiers. As the second objective, the model is optimized to output softmax logits which resemble the
softmax logits of the larger model for the same inputs. These softmax logits are considered at a specific
temperature, which is a hyperparameter in the distillation process. This additional objective, called the dis-
tillation loss, allows the smaller model to efficiently learn the knowledge the larger model developed during
training.

A cross-lingual model distillation setup could be considered, where a multilingual model is trained with two
objectives functions: one directly optimizing the coreference resolution predictions and one distilling the
knowledge between SpanBERT and the multilingual model for English training samples. The aim would be
that the additional training signal pushing the multilingual model towards better predictions on the English
language and that this transfers into better performance on low-resource languages.

9.2.3 Task-adaptation

We found our multilingual approach to perform better when the datasets were consolidated over the dif-
ferent languages. However, it may not always be favorable to reduce each dataset to its lowest common
denominator version.
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Therefore, a multilingual coreference resolution system should be developed that can handle task and anno-
tation differences over the different languages, while still allowing positive transfer between languages.

One possible way to tackle this is via the field of Multi-Task Learning (MTL) [51]. MLT allows models to build a
shared representation for related task, to allow for task-specific architectures while still generalizing between
tasks.

To deal with the singleton problem concerning coreference resolution, we could build an additional model
with a modified architecture that allows the prediction of singletons. To still allow the core of our model -
the Transformer — to benefit from multilingual training, we can softly share the weights between the cores
of these two models.
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